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Background

Oil Recovery

In fluid dynamics, the Buckley-Leverett (BL) equation [1] is a simple
model for two-phase flow in porous medium.

One application is secondary recovery by water-drive in oil reservoir
simulation.

Figure: Primary recovery stage (5-15%) and secondary recovery stage (35-45%).
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Buckley-Leverett Equation

BL Equation

In the one-dimensional (1-D) case, the classical BL equation is a scalar
conversation law

ut + f (u)x = 0,

with the flux function f (u) being defined as

f (u) =


0, u < 0,

u2

u2 + M(1− u)2
, 0 ≤ u ≤ 1,

1, u > 1.

u denotes the water saturation 0 ≤ u ≤ 1. u = 0 pure oil. u = 1 pure
water.
M > 0 the viscosity ratio between water and oil.
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Buckley-Leverett Equation

Flux
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Figure: The flux function and its derivative. left: f (u) = u2

u2+M(1−u)2 ; right:

f ′(u) = 2Mu(1−u)
(u2+M(1−u)2)2 . α =

√
M

M+1 . α ≈ 0.8165 for M = 2.

C.-Y. Kao, A. Kurganov, Z. Qu, Y. Wang MBL Equations April 1, 2014 6 / 48



Introduction MBL Equation Fast Explicit Operator Splitting Method Numerical Results Higher Dimension References

Buckley-Leverett Equation

Monotone Solution for BL Equation

Entropy solution for the Riemann initial problem has been well studied
[5, 7]. Let α be the solution of f ′(u) = f (u)

u , i.e.,

α =

√
M

M + 1
. α ≈ 0.8165 for M = 2.

1. If 0 < uB ≤ α, the entropy solution has a single shock at x
t = f (uB)

uB
.

2. If α < uB < 1, the entropy solution contains a rarefaction between uB
and α for f ′(uB) < x

t < f ′(α) and a shock at x
t = f (α)

α .
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Buckley-Leverett Equation

Experiment Results

Figure: Snapshots of the saturation profile versus depth for six different applied
fluxes in initially dry 20/30 sand measured using light transmission [2].

Overshoots ⇒ Nonmonotone profile ⇒ Modified BL Equation (MBL).
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MBL Equation

Modified BL Equation (MBL)

Hassanizadeh and Gray [3, 4] have included the extra terms to model the
dynamic effects in the capillary pressure between the two phases, and 1-D
MBL Equation reads as

ut + f (u)x = εuxx + ε2τuxxt , ε > 0, τ > 0,

where

f (u) =
u2

u2 + M(1− u)2
, M =

µw
µo

Classical second order viscous term εuxx

Third order mixed derivative term ε2τuxxt

ε is the diffusion coefficient. (ε, τ) determine the type of the solution
profile. When τ is larger than the threshold value τ∗, the solution
profile is non-monotone.
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MBL Equation

2-D MBL Equation

Two dimensional MBL Equation is

ut + f (u)x + g(u)y = ε∆u + ε2τ∆ut

where

f (u) =
u2

u2 + M(1− u)2
,

g(u) = f (u)(1− C (1− u)2).
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MBL Equation

BL v.s. MBL

ut + f (u)x = 0

ut + f (u)x = εuxx + ε2τuxxt

The classical BL equation is hyperbolic. The numerical schemes for
hyperbolic equations have been well-developed.

The MBL equation, however, is pseudo-parabolic.
Van Duijn et al [6]: first order finite difference scheme.
Wang et al [8, 7]: second- and third-order Godunov-type staggered
central schemes (1-D MBL equation).
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MBL Equation

Difficulty

General convection-diffusion equation:

ut + f (u)x = εuxx

In the convection dominated case, some numerical schemes have

extensive numerical viscosity: the solution under-resolved
spurious oscillations near the shock

Figure: Solution of convection-diffusion equation. Solid line: the initial data.
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MBL Equation

To overcome these difficulties

Fast Explicit Operator Splitting (FEOS) Method :

Chertock A, Kurganov A, Petrova G. Fast explicit operator splitting
method for convection-diffusion equations. International Journal for
Numerical Methods in Fluids, 2009, 59(3): 309-332.
Chertock A, Kurganov A. On splitting-based numerical methods for
convection-diffusion equations. Numerical Methods for Balance Laws,
Aracne editrice Srl, Rome, 2010.

numerically preserving a delicate balance between the convection and
diffusion terms.
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Convection-diffusion equation

Fast Explicit Operator Splitting (FEOS) Method

ut + f (u)x = εuxx

Split the equation into two sub-equations:

ut + f (u)x = 0

ut = εuxx

Second-order Strang splitting method

Nonlinear: hyperbolic problem → finite-volume Godunov-type scheme

Linear:

exact solution of the heat equation → approximated by a conservative
and accurate quadrature formula. e.g. midpoint rule
pseudo-spectral method

Splitting timestep: ∆t ∼ ∆x
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MBL Equation

Splitting Strategy

Take 1-D case for simplicity, and the 2-D case can be done similarly.

How to split the equation?

ut + f (u)x = εuxx + ε2τuxxt{
ut + f (u)x = 0

ut = εuxx + ε2τuxxt

Not a good choice!
We want time derivative appear in both equations. Otherwise:

S 6= S1 ◦ S2 + O((∆t)2)
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MBL Equation

Our Splitting Strategy

ut + f (u)x = εuxx + ε2τuxxt

Rewrite the MBL equation:

(u − ε2τuxx)t + f (u)x = εuxx .

SN : The solution operator associated with the nonlinear hyperbolic
equation with flux term

(u − ε2τuxx)t + f (u)x = 0

SL : associated with the linear equation with the diffusion term

(u − ε2τuxx)t = εuxx .
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MBL Equation

Splitting Strategy conti

Assume the solution of the MBL equation u(x , t) is available at time t,
then after a small time step ∆t, a first order splitting method consists of
two steps:

u(x , t + ∆t) = SL(∆t)SN(∆t)u(x , t)

The second order operator splitting method consists of three steps:

u(x , t + ∆t) = SN(
∆t

2
)SL(∆t)SN(

∆t

2
)u(x , t)
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MBL Equation

SN : Nonlinear Step

(u − ε2τuxx)t + f (u)x = 0

{
vt + f (u)x = 0,
u − ε2τuxx = v .

Semi-discrete scheme:

dvj(t)

dt
=

Hj+ 1
2
− Hj− 1

2

∆x

Hj+ 1
2
: Godunov-type central-upwind scheme. To discretize the flux:

nonlinear Minmod limiter
WENO5 reconstruction

Integrate in time by third-order SSP Runge-Kutta method.
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MBL Equation

SN : Nonlinear Step conti.

{
vt + f (u)x = 0,
u − ε2τuxx = v .

At each stage of Runge-Kutta method, the elliptic equation is solved
by the spectral method.

1 Take Fast Fourier Transform (FFT)
2

ũ − ε2τ(ik)2ũ = ṽ ,

(1 + ε2τk2)ũ = ṽ .

ũ =
ṽ

1 + ε2τk2

3 Take the Inverse FFT
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MBL Equation

SL : Linear Step

(u − ε2τuxx)t = εuxx

Linear equation, by using spectral method, we get

(ũ − ε2τ(ik)2ũ)t = ε(ik)2ũ,

ũt =
−εk2

1 + ε2τk2
ũ.

Therefore,

ũ(x , t + ∆t) = exp(
−εk2∆t

1 + ε2τk2
)ũ(x , t)
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Accuracy Test

Linear Problem

Test the accuracy on solving the equation with linear flux

ut + aux = εuxx + ε2τuxxt ,

In 2D, we consider the equation

ut + aux + buy = ε∆u + ε2τ(∆u)t .

Initial condition is

u(x , 0) = sin(πx) x ∈ [0, 2]

u(x , y , 0) = sin(πx) + sin(πy) (x , y) ∈ [0, 2]× [0, 2]
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Accuracy Test

1D

ut + aux = εuxx + ε2τuxxt

The accuracy test for second-order central-upwind scheme for 1D equation
with a = 1, ε = 10−3 and τ = 5.

N L1 error order L2 error order L∞ error order

64 1.4755E-02 - 1.3400E-02 - 2.4467E-02 -
128 2.6529E-03 2.4755 2.4454E-03 2.4541 5.9092E-03 2.0498
256 4.5606E-04 2.5403 3.7676E-04 2.6983 9.7694E-04 2.5966
512 1.0240E-04 2.1551 8.0050E-05 2.2347 1.1068E-04 3.1418

1024 2.5122E-05 2.0272 1.9691E-05 2.0233 1.9653E-05 2.4936
2048 6.2732E-06 2.0017 4.9248E-06 1.9994 4.9236E-06 1.9969

The convergence rate is second order.
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Accuracy Test

1D

ut + aux = εuxx + ε2τuxxt

The accuracy test for WENO5 scheme for 1D equation with a = 1,
ε = 10−3 and τ = 5.

N L1 error order L2 error order L∞ error order

64 1.3145E-05 - 1.0293E-05 - 1.0782E-05 -
128 8.6308E-07 3.9289 6.7674E-07 3.9269 6.7037E-07 4.0076
256 8.3592E-08 3.3681 6.5634E-08 3.3661 6.4986E-08 3.3667
512 9.6942E-09 3.1082 7.6128E-09 3.1079 7.5732E-09 3.1012

1024 1.1924E-09 3.0233 9.3638E-10 3.0233 9.3454E-10 3.0186
2048 1.5306E-10 2.9617 1.2021E-10 2.9616 1.2057E-10 2.9544

The convergence rate is third order.
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Accuracy Test

2D

ut + aux + buy = ε∆u + ε2τ(∆u)t

The accuracy test for WENO5 scheme for 2D equation with a = 1, b = 1,
ε = 10−3 and τ = 5.

N L1 error order L2 error order L∞ error order

64 3.3396E-05 - 2.0586E-05 - 2.1565E-05 -
128 2.1915E-06 3.9297 1.3535E-06 3.9269 1.3407E-06 4.0076
256 2.1273E-07 3.3648 1.3127E-07 3.3661 1.2997E-07 3.3667
512 2.4679E-08 3.1077 1.5226E-08 3.1079 1.5146E-08 3.1012

1024 3.0370E-09 3.0226 1.8736E-09 3.0226 1.8690E-09 3.0185

The convergence rate is third order.
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Comparison between second order central-upwind and WENO5 methods

Nonlinear Problem

We first solve the one-dimensional MBL equation

ut + f (u)x = εuxx + ε2τuxxt ,

with the initial condition

u(x , 0) =

{
uB , if x ∈ (0.75, 2.25),
0, otherwise,

on the domain [0, 3] with periodic boundary condition.

f (u) =
u2

u2 + M(1− u)2

Here, ε = 10−3, M = 1/2, and final time T = 0.5.
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Comparison between second order central-upwind and WENO5 methods

This problem has been studied in [6]. Van Duijn et al numerically provided
a bifurcation diagram of MBL equation as τ and uB vary.
M = 1

2 , C = 2. Blue: ū, Red: u, Solid: f , Dash g .
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Comparison between second order central-upwind and WENO5 methods

(a) uB > ū ⇒ rarefaction + shock

(b) u < uB < ū ⇒ jump up + jump down (shock)
(Oscillation may appear near u = uB)

(c) uB < u ⇒ single shock
(Oscillation may appear near u = uB)
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Comparison between second order central-upwind and WENO5 methods

Case 1:uB > ū: uB = 0.85, τ = 3.5
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Comparison between second order central-upwind and WENO5 methods

Case 2:u < uB < ū: uB = 0.66, τ = 5
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By bifurcation diagram: ū ≈ 0.713
non-monoton solution profile.

C.-Y. Kao, A. Kurganov, Z. Qu, Y. Wang MBL Equations April 1, 2014 32 / 48



Introduction MBL Equation Fast Explicit Operator Splitting Method Numerical Results Higher Dimension References

Comparison between second order central-upwind and WENO5 methods

Case 3: u < uB < ū: uB = 0.52, τ = 5
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Comparison between second order central-upwind and WENO5 methods

Case 3: u < uB < ū: uB = 0.52, τ = 5
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Comparison between flux functions

Flux f (u) v.s. g(u)

ut + f (u)x + g(u)y = ε∆u + ε2τ∆ut

where

f (u) =
u2

u2 + M(1− u)2
,

g(u) = f (u)(1− C (1− u)2).

In our computations, we take C = 2.

Computation domain is [0, 13] and the initial value is

u0(x) =

{
uB x ∈ [4, 10],
0 otherwise.

T = 1.2, N = 16384.
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Comparison between flux functions

In order to compute the solution profiles associated with two different
fluxes f and g , we choose nine representative pairs of (τ, uB) values.

(0.2, 0.85) (0.65, 0.85) (3.5, 0.85)

(0.2, 0.68) (0.65, 0.68) (3.5, 0.68)

(0.2, 0.55) (0.65, 0.55) (3.5, 0.55)
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Comparison between flux functions

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2
u

B

τ

bifurcation diagram

τ
*g

 → ← τ
*f

Figure: The zoom-in view of the bifurcation diagram.
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Comparison between flux functions
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2-D Examples

2-D Rotational BL and MBL Equations

ut +∇ ·
(
~V

u2

u2 + M(1− u)2

)
= h(∆u,∆ut)

where ~V (x) = [y ,−x ], and M = 2 with the initial condition

u(x , y , 0) =

{ √
2
3 , if x2 + y2 ≤ 1, 0 ≤ θ ≤ π

2 ,

0, otherwise.

Our computational domain is [−2, 2]2.

Classical BL Equation: h(∆u,∆ut) = 0
Modified BL Equation: h(∆u,∆ut) = ε∆u + ε2τ∆ut
Here, ε = 10−3 and τ = 5.
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2-D Examples

Figure: BL v.s. MBL equation: view from the top (left) and 3D view (right).
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2-D Examples

2-D BL and MBL Equations (1)

ut + f (u)x + g(u)y = h(∆u,∆ut)

where

f (u) =
u2

u2 + M(1− u)2
,

g(u) = f (u)(1− 2(1− u)2),

with two different initial conditions. The first initial condition is a smooth
two-dimensional Gaussian function

u(x , y , 0) = 5e−20(x
2+y2)

cut off by a plateau u = 0.85 in the computational domain [−1.25, 1.25]2

with τ = 2.5,M = 1/2, ε = 10−3.
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2-D Examples

Figure: BL v.s. MBL equation: view from the top (left) and 3D view (right).
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2-D Examples

2-D BL and MBL Equations (2)

ut + f (u)x + g(u)y = h(∆u,∆ut)

where

f (u) =
u2

u2 + M(1− u)2
,

g(u) = f (u)(1− 2(1− u)2),

The second initial condition is a nonsmooth function

u(x , y , 0) =

{
uB , if 0.75 ≤ |x | ≤ 2.25, or 0.75 ≤ |y | ≤ 2.25,
0, otherwise

in the computational domain [0, 3]2 with τ = 2.5,M = 1/2, and
uB = 0.85.
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2-D Examples

Figure: BL v.s. MBL equation: view from the top (left) and 3D view (right).
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Thank you!
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