A Fast Explicit Operator Splitting Method for Modified Buckley-Leverett Equations

Chiu-Yen Kao ${ }^{1}$ Alexander Kurganov ${ }^{2}$ Zhuolin Qu ${ }^{2}$ Ying Wang ${ }^{3}$
${ }^{1}$ Department of Mathematical Sciences, Claremont McKenna College, Claremont, CA 91711
${ }^{2}$ Mathematics Department, Tulane University, New Orleans, LA 70118
${ }^{3}$ Department of Mathematics, University of Oklahoma, Norman, OK 73019
C.-Y. Kao, A. Kurganov, Z. Qu, Y. Wang

Outlines

(1) Introduction
(2) MBL Equation
(3) Fast Explicit Operator Splitting Method

4 Numerical Results
(5) Higher Dimension
(6) References

Outlines

(1) Introduction

(2) MBL Equation
(3) Fast Explicit Operator Splitting Method

4 Numerical Results
(5) Higher Dimension
(6) References

Oil Recovery

In fluid dynamics, the Buckley-Leverett (BL) equation [1] is a simple model for two-phase flow in porous medium.

One application is secondary recovery by water-drive in oil reservoir simulation.

Figure: Primary recovery stage (5-15\%) and secondary recovery stage (35-45\%).

BL Equation

In the one-dimensional (1-D) case, the classical BL equation is a scalar conversation law

$$
u_{t}+f(u)_{x}=0,
$$

with the flux function $f(u)$ being defined as

$$
f(u)= \begin{cases}0, & u<0 \\ \frac{u^{2}}{u^{2}+M(1-u)^{2}}, & 0 \leq u \leq 1 \\ 1, & u>1\end{cases}
$$

u denotes the water saturation $0 \leq u \leq 1$. $u=0$ pure oil. $u=1$ pure water.
$M>0$ the viscosity ratio between water and oil.

Buckley-Leverett Equation

Flux

Figure: The flux function and its derivative. left: $f(u)=\frac{u^{2}}{u^{2}+M(1-u)^{2}}$; right: $f^{\prime}(u)=\frac{2 M u(1-u)}{\left(u^{2}+M(1-u)^{2}\right)^{2}} . \alpha=\sqrt{\frac{M}{M+1}} . \alpha \approx 0.8165$ for $M=2$.

Monotone Solution for BL Equation

Entropy solution for the Riemann initial problem has been well studied $[5,7]$. Let α be the solution of $f^{\prime}(u)=\frac{f(u)}{u}$, i.e.,

$$
\alpha=\sqrt{\frac{M}{M+1}} . \quad \alpha \approx 0.8165 \text { for } M=2 .
$$

1. If $0<u_{B} \leq \alpha$, the entropy solution has a single shock at $\frac{x}{t}=\frac{f\left(u_{B}\right)}{u_{B}}$.
2. If $\alpha<u_{B}<1$, the entropy solution contains a rarefaction between u_{B} and α for $f^{\prime}\left(u_{B}\right)<\frac{x}{t}<f^{\prime}(\alpha)$ and a shock at $\frac{x}{t}=\frac{f(\alpha)}{\alpha}$.

$$
u_{B}=0.7
$$

Experiment Results

Figure: Snapshots of the saturation profile versus depth for six different applied fluxes in initially dry 20/30 sand measured using light transmission [2].

Experiment Results

Figure: Snapshots of the saturation profile versus depth for six different applied fluxes in initially dry 20/30 sand measured using light transmission [2].

Overshoots

Experiment Results

Figure: Snapshots of the saturation profile versus depth for six different applied fluxes in initially dry 20/30 sand measured using light transmission [2].

Overshoots \Rightarrow Nonmonotone profile

Experiment Results

Figure: Snapshots of the saturation profile versus depth for six different applied fluxes in initially dry 20/30 sand measured using light transmission [2].
Overshoots \Rightarrow Nonmonotone profile \Rightarrow Modified BL Equation (MBL).

Outlines

(1) Introduction

(2) MBL Equation

(3) Fast Explicit Operator Splitting Method

4 Numerical Results
(5) Higher Dimension

6 References

Modified BL Equation (MBL)

Hassanizadeh and Gray [3, 4] have included the extra terms to model the dynamic effects in the capillary pressure between the two phases, and 1-D MBL Equation reads as

$$
u_{t}+f(u)_{x}=\epsilon u_{x x}+\epsilon^{2} \tau u_{x x t}, \quad \epsilon>0, \tau>0,
$$

where

$$
f(u)=\frac{u^{2}}{u^{2}+M(1-u)^{2}}, \quad M=\frac{\mu_{w}}{\mu_{o}}
$$

- Classical second order viscous term $\epsilon U_{x x}$
- Third order mixed derivative term $\epsilon^{2} \tau u_{x x t}$
- ϵ is the diffusion coefficient. (ϵ, τ) determine the type of the solution profile. When τ is larger than the threshold value τ_{*}, the solution
profile is non-monotone.

Modified BL Equation (MBL)

Hassanizadeh and Gray [3, 4] have included the extra terms to model the dynamic effects in the capillary pressure between the two phases, and 1-D MBL Equation reads as

$$
u_{t}+f(u)_{x}=\epsilon u_{x x}+\epsilon^{2} \tau u_{x x t}, \quad \epsilon>0, \tau>0
$$

where

$$
f(u)=\frac{u^{2}}{u^{2}+M(1-u)^{2}}, \quad M=\frac{\mu_{w}}{\mu_{o}}
$$

- Classical second order viscous term $\epsilon u_{x x}$
- Third order mixed derivative term $\epsilon^{2} \tau u_{x x t}$
- ϵ is the diffusion coefficient. (ϵ, τ) determine the type of the solution profile. When τ is larger than the threshold value τ_{*}, the solution profile is non-monotone.

2-D MBL Equation

Two dimensional MBL Equation is

$$
u_{t}+f(u)_{x}+g(u)_{y}=\epsilon \Delta u+\epsilon^{2} \tau \Delta u_{t}
$$

where

$$
\begin{aligned}
f(u) & =\frac{u^{2}}{u^{2}+M(1-u)^{2}}, \\
g(u) & =f(u)\left(1-C(1-u)^{2}\right) .
\end{aligned}
$$

BL v.s. MBL

$$
\begin{gathered}
u_{t}+f(u)_{x}=0 \\
u_{t}+f(u)_{x}=\epsilon u_{x x}+\epsilon^{2} \tau u_{x x t}
\end{gathered}
$$

- The classical BL equation is hyperbolic. The numerical schemes for hyperbolic equations have been well-developed.
- The MBL equation, however, is pseudo-parabolic. Van Duijn et al [6]: first order finite difference scheme. Wang et al $[8,7]$: second- and third-order Godunov-type staggered central schemes (1-D MBL equation).

MBL Equation

Difficulty

General convection-diffusion equation:

$$
u_{t}+f(u)_{x}=\epsilon u_{x x}
$$

In the convection dominated case, some numerical schemes have

- extensive numerical viscosity: the solution under-resolved
- spurious oscillations near the shock

Figure: Solution of convection-diffusion equation. Solid line: the initial data.

To overcome these difficulties

- Fast Explicit Operator Splitting (FEOS) Method :
- Chertock A, Kurganov A, Petrova G. Fast explicit operator splitting method for convection-diffusion equations. International Journal for Numerical Methods in Fluids, 2009, 59(3): 309-332.
- Chertock A, Kurganov A. On splitting-based numerical methods for convection-diffusion equations. Numerical Methods for Balance Laws, Aracne editrice Srl, Rome, 2010.
- numerically preserving a delicate balance between the convection and diffusion terms.

Outlines

(1) Introduction
(2) MBL Equation
(3) Fast Explicit Operator Splitting Method
(4) Numerical Results
(5) Higher Dimension
(6) References

Fast Explicit Operator Splitting (FEOS) Method

$$
u_{t}+f(u)_{x}=\epsilon u_{x x}
$$

Split the equation into two sub-equations:

$$
\begin{gathered}
u_{t}+f(u)_{x}=0 \\
u_{t}=\epsilon u_{x x}
\end{gathered}
$$

- Second-order Strang splitting method
- Nonlinear: hynerbolic nroblem \rightarrow finite-volume Godunov-type scheme
- Linear:
- exact solution of the heat equation \rightarrow approximated by a conservative and accurate quadrature formula. e.g. midpoint rule
- pseudo-spectral method
- Splitting timestep: Δt

Fast Explicit Operator Splitting (FEOS) Method

$$
u_{t}+f(u)_{x}=\epsilon u_{x x}
$$

Split the equation into two sub-equations:

$$
\begin{gathered}
u_{t}+f(u)_{x}=0 \\
u_{t}=\epsilon u_{x x}
\end{gathered}
$$

- Second-order Strang splitting method
- Nonlinear: hyperbolic problem \rightarrow finite-volume Godunov-type scheme
- Linear:
- exact solution of the heat equation \rightarrow approximated by a conservative and accurate quadrature formula. e.g. midpoint rule
- pseudo-spectral method
- Splitting timestep: $\Delta t \sim \Delta x$

Fast Explicit Operator Splitting (FEOS) Method

$$
u_{t}+f(u)_{x}=\epsilon u_{x x}
$$

Split the equation into two sub-equations:

$$
\begin{gathered}
u_{t}+f(u)_{x}=0 \\
u_{t}=\epsilon u_{x x}
\end{gathered}
$$

- Second-order Strang splitting method
- Nonlinear: hyperbolic problem \rightarrow finite-volume Godunov-type scheme - Linear:
- exact solution of the heat equation \rightarrow approximated by a conservative and accurate quadrature formula. e.g. midpoint rule
- pseudo-spectral method

Fast Explicit Operator Splitting (FEOS) Method

$$
u_{t}+f(u)_{x}=\epsilon u_{x x}
$$

Split the equation into two sub-equations:

$$
\begin{gathered}
u_{t}+f(u)_{x}=0 \\
u_{t}=\epsilon u_{x x}
\end{gathered}
$$

- Second-order Strang splitting method
- Nonlinear: hyperbolic problem \rightarrow finite-volume Godunov-type scheme
- Linear:
- exact solution of the heat equation \rightarrow approximated by a conservative and accurate quadrature formula. e.g. midpoint rule
- pseudo-spectral method

Fast Explicit Operator Splitting (FEOS) Method

$$
u_{t}+f(u)_{x}=\epsilon u_{x x}
$$

Split the equation into two sub-equations:

$$
\begin{gathered}
u_{t}+f(u)_{x}=0 \\
u_{t}=\epsilon u_{x x}
\end{gathered}
$$

- Second-order Strang splitting method
- Nonlinear: hyperbolic problem \rightarrow finite-volume Godunov-type scheme
- Linear:
- exact solution of the heat equation \rightarrow approximated by a conservative and accurate quadrature formula. e.g. midpoint rule
- pseudo-spectral method
- Splitting timestep: $\Delta t \sim \Delta x$

Splitting Strategy

Take 1-D case for simplicity, and the 2-D case can be done similarly.

How to split the equation?

$$
u_{t}+f(u)_{x}=\epsilon u_{x x}+\epsilon^{2} \tau u_{x x t}
$$

Not a good choice!
We want time derivative appear in both equations. Otherwise:
\square

Splitting Strategy

Take 1-D case for simplicity, and the 2-D case can be done similarly.

How to split the equation?

$$
\begin{aligned}
& u_{t}+f(u)_{x}=\epsilon u_{x x}+\epsilon^{2} \tau u_{x x t} \\
& \begin{cases}u_{t}+f(u)_{x} & =0 \\
u_{t} & =\epsilon u_{x x}+\epsilon^{2} \tau u_{x x t}\end{cases}
\end{aligned}
$$

Not a good choice!
We want time derivative appear in both equations. Otherwise:
\square

Splitting Strategy

Take 1-D case for simplicity, and the 2-D case can be done similarly.

How to split the equation?

$$
\begin{aligned}
& u_{t}+f(u)_{x}=\epsilon u_{x x}+\epsilon^{2} \tau u_{x x t} \\
& \begin{cases}u_{t}+f(u)_{x} & =0 \\
u_{t} & =\epsilon u_{x x}+\epsilon^{2} \tau u_{x x t}\end{cases}
\end{aligned}
$$

Not a good choice!
We want time derivative appear in both equations. Otherwise:

$$
S \neq S_{1} \circ S_{2}+O\left((\Delta t)^{2}\right)
$$

Our Splitting Strategy

$$
u_{t}+f(u)_{x}=\epsilon u_{x x}+\epsilon^{2} \tau u_{x x t}
$$

Rewrite the MBL equation:

$$
\left(u-\epsilon^{2} \tau u_{x x}\right)_{t}+f(u)_{x}=\epsilon u_{x x}
$$

S_{N} : The solution operator associated with the nonlinear hyperbolic equation with flux term

S_{L} : associated with the linear equation with the diffusion term

$$
\left(u-\epsilon^{2} \tau u_{x x}\right)_{t}=\epsilon u_{x x} .
$$

Our Splitting Strategy

$$
u_{t}+f(u)_{x}=\epsilon u_{x x}+\epsilon^{2} \tau u_{x x t}
$$

Rewrite the MBL equation:

$$
\left(u-\epsilon^{2} \tau u_{x x}\right)_{t}+f(u)_{x}=\epsilon u_{x x} .
$$

S_{N} : The solution operator associated with the nonlinear hyperbolic equation with flux term

S_{L} : associated with the linear equation with the diffusion term

$$
\left(u-\epsilon^{2} \tau u_{x x}\right)_{t}=\epsilon u_{x x}
$$

Our Splitting Strategy

$$
u_{t}+f(u)_{x}=\epsilon u_{x x}+\epsilon^{2} \tau u_{x x t}
$$

Rewrite the MBL equation:

$$
\left(u-\epsilon^{2} \tau u_{x x}\right)_{t}+f(u)_{x}=\epsilon u_{x x} .
$$

S_{N} : The solution operator associated with the nonlinear hyperbolic equation with flux term

$$
\left(u-\epsilon^{2} \tau u_{x x}\right)_{t}+f(u)_{x}=0
$$

S_{L} : associated with the linear equation with the diffusion term

$$
\left(u-\epsilon^{2} \tau u_{x x}\right)_{t}=\epsilon u_{x x}
$$

Splitting Strategy conti

Assume the solution of the MBL equation $u(x, t)$ is available at time t, then after a small time step Δt, a first order splitting method consists of two steps:

$$
u(x, t+\Delta t)=S_{L}(\Delta t) S_{N}(\Delta t) u(x, t)
$$

The second order operator splitting method consists of three steps:

$$
u(x, t+\Delta t)=S_{N}\left(\frac{\Delta t}{2}\right) S_{L}(\Delta t) S_{N}\left(\frac{\Delta t}{2}\right) u(x, t)
$$

S_{N} : Nonlinear Step

$$
\left(u-\epsilon^{2} \tau u_{x x}\right)_{t}+f(u)_{x}=0
$$

$$
\left\{\begin{array}{l}
v_{t}+f(u)_{x}=0 \\
u-\epsilon^{2} \tau u_{x x}=v
\end{array}\right.
$$

- Semi-discrete scheme:

$H_{j+\frac{1}{2}}$: Godunov-type central-upwind scheme. To discretize the flux:
- nonlinear Minmod limiter
- WENO5 reconstruction
- Integrate in time by third-order SSP Runge-Kutta method.

S_{N} : Nonlinear Step

$$
\begin{gathered}
\left(u-\epsilon^{2} \tau u_{x x}\right)_{t}+f(u)_{x}=0 \\
\left\{\begin{array}{c}
v_{t}+f(u)_{x}=0, \\
u-\epsilon^{2} \tau u_{x x}=v .
\end{array}\right.
\end{gathered}
$$

- Semi-discrete scheme:

$H_{j+\frac{1}{2}}$: Godunov-type central-upwind scheme. To discretize the flux:
- nonlinear Minmod limiter
- WENO5 reconstruction
- Integrate in time by third-order SSP Runge-Kutta method.

S_{N} : Nonlinear Step

$$
\begin{gathered}
\left(u-\epsilon^{2} \tau u_{x x}\right)_{t}+f(u)_{x}=0 \\
\left\{\begin{array}{c}
v_{t}+f(u)_{x}=0, \\
u-\epsilon^{2} \tau u_{x x}=v .
\end{array}\right.
\end{gathered}
$$

- Semi-discrete scheme:

$$
\frac{d v_{j}(t)}{d t}=\frac{H_{j+\frac{1}{2}}-H_{j-\frac{1}{2}}}{\Delta x}
$$

$H_{j+\frac{1}{2}}$: Godunov-type central-upwind scheme. To discretize the flux:

- nonlinear Minmod limiter
- WENO5 reconstruction
- Integrate in time by third-order SSP Runge-Kutta method.

S_{N} : Nonlinear Step conti.

$$
\left\{\begin{array}{l}
v_{t}+f(u)_{x}=0 \\
u-\epsilon^{2} \tau u_{x x}=v
\end{array}\right.
$$

- At each stage of Runge-Kutta method, the elliptic equation is solved by the spectral method.
(1) Take Fast Fourier Transform (FFT)

(3) Take the Inverse FFT

$S_{N}:$ Nonlinear Step conti.

$$
\left\{\begin{array}{l}
v_{t}+f(u)_{x}=0 \\
u-\epsilon^{2} \tau u_{x x}=v
\end{array}\right.
$$

- At each stage of Runge-Kutta method, the elliptic equation is solved by the spectral method.
(1) Take Fast Fourier Transform (FFT)
(2)

$$
\begin{gathered}
\tilde{u}-\epsilon^{2} \tau(i k)^{2} \tilde{u}=\tilde{v} \\
\left(1+\epsilon^{2} \tau k^{2}\right) \tilde{u}=\tilde{v} \\
\tilde{u}=\frac{\tilde{v}}{1+\epsilon^{2} \tau k^{2}}
\end{gathered}
$$

(3) Take the Inverse FFT

S_{L} : Linear Step

$$
\left(u-\epsilon^{2} \tau u_{x x}\right)_{t}=\epsilon u_{x x}
$$

Linear equation, by using spectral method, we get

$$
\begin{gathered}
\left(\tilde{u}-\epsilon^{2} \tau(i k)^{2} \tilde{u}\right)_{t}=\epsilon(i k)^{2} \tilde{u}, \\
\tilde{u}_{t}=\frac{-\epsilon k^{2}}{1+\epsilon^{2} \tau k^{2}} \tilde{u} .
\end{gathered}
$$

Therefore,

$$
\tilde{u}(x, t+\Delta t)=\exp \left(\frac{-\epsilon k^{2} \Delta t}{1+\epsilon^{2} \tau k^{2}}\right) \tilde{u}(x, t)
$$

Outlines

(1) Introduction
(2) MBL Equation
(3) Fast Explicit Operator Splitting Method

4 Numerical Results
(5) Higher Dimension
(6) References

Linear Problem

Test the accuracy on solving the equation with linear flux

$$
u_{t}+a u_{x}=\epsilon u_{x x}+\epsilon^{2} \tau u_{x x t}
$$

In 2D, we consider the equation

$$
u_{t}+a u_{x}+b u_{y}=\epsilon \Delta u+\epsilon^{2} \tau(\Delta u)_{t}
$$

Initial condition is

$$
\begin{aligned}
u(x, 0)=\sin (\pi x) & x \in[0,2] \\
u(x, y, 0)=\sin (\pi x)+\sin (\pi y) & (x, y) \in[0,2] \times[0,2]
\end{aligned}
$$

Accuracy Test

1D

$$
u_{t}+a u_{x}=\epsilon u_{x x}+\epsilon^{2} \tau u_{x x t}
$$

The accuracy test for second-order central-upwind scheme for 1D equation with $a=1, \epsilon=10^{-3}$ and $\tau=5$.

N	L_{1} error	order	L_{2} error	order	L_{∞} error	order
64	$1.4755 \mathrm{E}-02$	-	$1.3400 \mathrm{E}-02$	-	$2.4467 \mathrm{E}-02$	-
128	$2.6529 \mathrm{E}-03$	2.4755	$2.4454 \mathrm{E}-03$	2.4541	$5.9092 \mathrm{E}-03$	2.0498
256	$4.5606 \mathrm{E}-04$	2.5403	$3.7676 \mathrm{E}-04$	2.6983	$9.7694 \mathrm{E}-04$	2.5966
512	$1.0240 \mathrm{E}-04$	2.1551	$8.0050 \mathrm{E}-05$	2.2347	$1.1068 \mathrm{E}-04$	3.1418
1024	$2.5122 \mathrm{E}-05$	2.0272	$1.9691 \mathrm{E}-05$	2.0233	$1.9653 \mathrm{E}-05$	2.4936
2048	$6.2732 \mathrm{E}-06$	2.0017	$4.9248 \mathrm{E}-06$	1.9994	$4.9236 \mathrm{E}-06$	1.9969

The convergence rate is second order.

Accuracy Test

1D

$$
u_{t}+a u_{x}=\epsilon u_{x x}+\epsilon^{2} \tau u_{x x t}
$$

The accuracy test for WENO5 scheme for 1D equation with $a=1$, $\epsilon=10^{-3}$ and $\tau=5$.

N	L_{1} error	order	L_{2} error	order	L_{∞} error	order
64	$1.3145 \mathrm{E}-05$	-	$1.0293 \mathrm{E}-05$	-	$1.0782 \mathrm{E}-05$	-
128	$8.6308 \mathrm{E}-07$	3.9289	$6.7674 \mathrm{E}-07$	3.9269	$6.7037 \mathrm{E}-07$	4.0076
256	$8.3592 \mathrm{E}-08$	3.3681	$6.5634 \mathrm{E}-08$	3.3661	$6.4986 \mathrm{E}-08$	3.3667
512	$9.6942 \mathrm{E}-09$	3.1082	$7.6128 \mathrm{E}-09$	3.1079	$7.5732 \mathrm{E}-09$	3.1012
1024	$1.1924 \mathrm{E}-09$	3.0233	$9.3638 \mathrm{E}-10$	3.0233	$9.3454 \mathrm{E}-10$	3.0186
2048	$1.5306 \mathrm{E}-10$	2.9617	$1.2021 \mathrm{E}-10$	2.9616	$1.2057 \mathrm{E}-10$	2.9544

The convergence rate is third order.

2D

$$
u_{t}+a u_{x}+b u_{y}=\epsilon \Delta u+\epsilon^{2} \tau(\Delta u)_{t}
$$

The accuracy test for WENO5 scheme for 2D equation with $a=1, b=1$, $\epsilon=10^{-3}$ and $\tau=5$.

N	L_{1} error	order	L_{2} error	order	L_{∞} error	order
64	$3.3396 \mathrm{E}-05$	-	$2.0586 \mathrm{E}-05$	-	$2.1565 \mathrm{E}-05$	-
128	$2.1915 \mathrm{E}-06$	3.9297	$1.3535 \mathrm{E}-06$	3.9269	$1.3407 \mathrm{E}-06$	4.0076
256	$2.1273 \mathrm{E}-07$	3.3648	$1.3127 \mathrm{E}-07$	3.3661	$1.2997 \mathrm{E}-07$	3.3667
512	$2.4679 \mathrm{E}-08$	3.1077	$1.5226 \mathrm{E}-08$	3.1079	$1.5146 \mathrm{E}-08$	3.1012
1024	$3.0370 \mathrm{E}-09$	3.0226	$1.8736 \mathrm{E}-09$	3.0226	$1.8690 \mathrm{E}-09$	3.0185

The convergence rate is third order.

Comparison between second order central-upwind and WENO5 methods

Nonlinear Problem

We first solve the one-dimensional MBL equation

$$
u_{t}+f(u)_{x}=\epsilon u_{x x}+\epsilon^{2} \tau u_{x x t}
$$

with the initial condition

$$
u(x, 0)= \begin{cases}u_{B}, & \text { if } x \in(0.75,2.25) \\ 0, & \text { otherwise }\end{cases}
$$

on the domain $[0,3]$ with periodic boundary condition.

$$
f(u)=\frac{u^{2}}{u^{2}+M(1-u)^{2}}
$$

Here, $\epsilon=10^{-3}, M=1 / 2$, and final time $T=0.5$.

Comparison between second order central-upwind and WENO5 methods
This problem has been studied in [6]. Van Duijn et al numerically provided a bifurcation diagram of MBL equation as τ and u_{B} vary. $M=\frac{1}{2}, C=2$. Blue: \bar{u}, Red: \underline{u}, Solid: f, Dash g.
bifurcation diagram

Comparison between second order central-upwind and WENO5 methods
(a) $u_{B}>\bar{u}$
(b) $\underline{u}<u_{B}<\bar{u}$
(c) $u_{B}<\underline{u}$

(a) $u_{B}>\bar{u} \Rightarrow$ rarefaction + shock
(b) $\underline{u}<u_{B}<\bar{u} \Rightarrow$ jump up + jump down (shock)
(Oscillation may appear near $u=u_{B}$)
(c) $u_{B}<\underline{u} \Rightarrow$ single shock
(Oscillation may appear near $u=u_{B}$)

Comparison between second order central-upwind and WENO5 methods

Case $1: u_{B}>\bar{u}: u_{B}=0.85, \tau=3.5$

By bifurcation diagram: $\bar{u} \approx 0.698$

Comparison between second order central-upwind and WENO5 methods

Case $2: \underline{u}<u_{B}<\bar{u}: u_{B}=0.66, \tau=5$

By bifurcation diagram: $\bar{u} \approx 0.713$

non-monoton solution profile.

Comparison between second order central-upwind and WENO5 methods

Case 3: $\underline{u}<u_{B}<\bar{u}: u_{B}=0.52, \tau=5$

By bifurcation diagram: $\bar{u} \approx 0.713$
non-monoton solution profile.

Comparison between second order central-upwind and WENO5 methods

Case 3: $\underline{u}<u_{B}<\bar{u}: u_{B}=0.52, \tau=5$

By bifurcation diagram: $\bar{u} \approx 0.713$ non-monoton solution profile. Oscillation?

Outlines

(1) Introduction
(2) MBL Equation
(3) Fast Explicit Operator Splitting Method

4 Numerical Results

(5) Higher Dimension

6 References

Comparison between flux functions
Flux $f(u)$ v.s. $g(u)$

$$
u_{t}+f(u)_{x}+g(u)_{y}=\epsilon \Delta u+\epsilon^{2} \tau \Delta u_{t}
$$

where

$$
\begin{aligned}
& f(u)=\frac{u^{2}}{u^{2}+M(1-u)^{2}}, \\
& g(u)=f(u)\left(1-C(1-u)^{2}\right) .
\end{aligned}
$$

In our computations, we take $C=2$.
Computation domain is $[0,13]$ and the initial value is

Comparison between flux functions

Flux $f(u)$ v.s. $g(u)$

$$
u_{t}+f(u)_{x}+g(u)_{y}=\epsilon \Delta u+\epsilon^{2} \tau \Delta u_{t}
$$

where

$$
\begin{aligned}
& f(u)=\frac{u^{2}}{u^{2}+M(1-u)^{2}}, \\
& g(u)=f(u)\left(1-C(1-u)^{2}\right) .
\end{aligned}
$$

In our computations, we take $C=2$.

Computation domain is $[0,13]$ and the initial value is

$$
u_{0}(x)= \begin{cases}u_{B} & x \in[4,10], \\ 0 & \text { otherwise. }\end{cases}
$$

$T=1.2, \quad N=16384$.

In order to compute the solution profiles associated with two different fluxes f and g, we choose nine representative pairs of $\left(\tau, u_{B}\right)$ values.

$(0.2,0.85)$	$(0.65,0.85)$	$(3.5,0.85)$
$(0.2,0.68)$	$(0.65,0.68)$	$(3.5,0.68)$
$(0.2,0.55)$	$(0.65,0.55)$	$(3.5,0.55)$

Comparison between flux functions
bifurcation diagram

00000

2-D Rotational BL and MBL Equations

$$
u_{t}+\nabla \cdot\left(\vec{V} \frac{u^{2}}{u^{2}+M(1-u)^{2}}\right)=h\left(\Delta u, \Delta u_{t}\right)
$$

where $\vec{V}(x)=[y,-x]$, and $M=2$ with the initial condition

$$
u(x, y, 0)= \begin{cases}\sqrt{\frac{2}{3}}, & \text { if } x^{2}+y^{2} \leq 1,0 \leq \theta \leq \frac{\pi}{2} \\ 0, & \text { otherwise }\end{cases}
$$

Our computational domain is $[-2,2]^{2}$.
Classical BL Equation: $h\left(\Delta u, \Delta u_{t}\right)=0$
Modified BL Equation: $h\left(\Delta u, \Delta u_{t}\right)=\epsilon \Delta u+\epsilon^{2} \tau \Delta u_{t}$ Here, $\epsilon=10^{-3}$ and $\tau=5$.

Figure: BL v.s. MBL equation: view from the top (left) and 3D view (right).

2-D BL and MBL Equations (1)

$$
u_{t}+f(u)_{x}+g(u)_{y}=h\left(\Delta u, \Delta u_{t}\right)
$$

where

$$
\begin{aligned}
f(u) & =\frac{u^{2}}{u^{2}+M(1-u)^{2}} \\
g(u) & =f(u)\left(1-2(1-u)^{2}\right)
\end{aligned}
$$

with two different initial conditions. The first initial condition is a smooth two-dimensional Gaussian function

$$
u(x, y, 0)=5 e^{-20\left(x^{2}+y^{2}\right)}
$$

cut off by a plateau $u=0.85$ in the computational domain $[-1.25,1.25]^{2}$ with $\tau=2.5, M=1 / 2, \epsilon=10^{-3}$.

Figure: BL v.s. MBL equation: view from the top (left) and 3D view (right).

2-D BL and MBL Equations (2)

$$
u_{t}+f(u)_{x}+g(u)_{y}=h\left(\Delta u, \Delta u_{t}\right)
$$

where

$$
\begin{aligned}
f(u) & =\frac{u^{2}}{u^{2}+M(1-u)^{2}} \\
g(u) & =f(u)\left(1-2(1-u)^{2}\right)
\end{aligned}
$$

The second initial condition is a nonsmooth function

$$
u(x, y, 0)= \begin{cases}u_{B}, & \text { if } 0.75 \leq|x| \leq 2.25, \\ 0, & \text { or } \quad 0.75 \leq|y| \leq 2.25 \\ \text { otherwise }\end{cases}
$$

in the computational domain $[0,3]^{2}$ with $\tau=2.5, M=1 / 2$, and $u_{B}=0.85$.

Figure: BL v.s. MBL equation: view from the top (left) and 3D view (right).

Outlines

(1) Introduction
(2) MBL Equation
(3) Fast Explicit Operator Splitting Method
(4) Numerical Results
(5) Higher Dimension
(6) References

图 S.E. Buckley and M.C. Leverett.
Mechanism of fluid displacement in sands.
Petroleum Transactions, AIME, 146:107-116, 1942.
D. A. DiCarlo.

Experimental measurements of saturation overshoot on infiltration. Water Resources Research, 40:4215.1-4215.9, April 2004.

- S.M Hassanizadeh and W.G. Gray.

Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries.
Adv. Water Resour., 13:169-186, 1990.
圊 S.M Hassanizadeh and W.G. Gray.
Thermodynamic basis of capillary pressure in porous media.
Water Resour. Res., 29:3389-3405, 1993.

嗇 Randall J．LeVeque．
Finite volume methods for hyperbolic problems．
Cambridge Texts in Applied Mathematics．Cambridge University Press， Cambridge， 2002.
R C．J．van Duijn，L．A．Peletier，and I．S．Pop．
A new class of entropy solutions of the Buckley－Leverett equation． SIAM J．Math．Anal．，39（2）：507－536（electronic）， 2007.
固 Y．Wang．
Central schemes for the modified Buckley－Leverett equation． PhD thesis，The Ohio State University， 2010.

目 Y．Wang and C．－Y．Kao．
Central schemes for the modified Buckley－Leverett equation． J．Comput．Sci．，in press， 2012.

Thank you!

