Introduction	MBL Equation	Fast Explicit Operator Splitting Method	Numerical Results	Higher Dimension	References
00000	00000	0000000	000000000	000000000	

A Fast Explicit Operator Splitting Method for Modified Buckley-Leverett Equations

Chiu-Yen Kao¹ Alexander Kurganov² Zhuolin Qu² Ying Wang³

¹Department of Mathematical Sciences, Claremont McKenna College, Claremont, CA 91711

²Mathematics Department, Tulane University,New Orleans, LA 70118

³Department of Mathematics, University of Oklahoma, Norman, OK 73019

C.-Y. Kao, A. Kurganov, Z. Qu, Y. Wang

Introduction	MBL Equation	Fast Explicit Operator Splitting Method	Numerical Results	Higher Dimension	References
00000	00000	0000000	000000000	000000000	

Outlines

- 2 MBL Equation
- 3 Fast Explicit Operator Splitting Method
- Numerical Results 4
- **5** Higher Dimension

- (E

- (E

Introduction	MBL Equation	Fast Explicit Operator Splitting Method	Numerical Results	Higher Dimension	References
00000	00000	0000000	000000000	0000000000	

Outlines

- **MBL** Equation
- Fast Explicit Operator Splitting Method
- Numerical Results

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

nac

Introduction	MBL Equation	Fast Explicit Operator Splitting Method	Numerical Results	Higher Dimension	References
0000	00000	000000	0000000000	0000000000	
Background					

Oil Recovery

In fluid dynamics, the Buckley-Leverett (BL) equation [1] is a simple model for two-phase flow in porous medium.

One application is secondary recovery by water-drive in oil reservoir simulation.

Figure: Primary recovery stage (5-15%) and secondary recovery stage (35-45%).

BL Equation

In the one-dimensional (1-D) case, the classical BL equation is a scalar conversation law

$$u_t+f(u)_x=0,$$

with the flux function f(u) being defined as

$$f(u) = \begin{cases} 0, & u < 0, \\ \frac{u^2}{u^2 + M(1-u)^2}, & 0 \le u \le 1, \\ 1, & u > 1. \end{cases}$$

u denotes the water saturation $0 \le u \le 1$. u = 0 pure oil. u = 1 pure water.

M > 0 the viscosity ratio between water and oil.

イロト 不得 トイヨト イヨト 二日

Introduction	MBL Equation	Fast Explicit Operator Splitting Method	Numerical Results	Higher Dimension	References
00000	00000	000000	0000000000	0000000000	
Buckley-Leve	rett Equation				

Flux

Figure: The flux function and its derivative. left: $f(u) = \frac{u^2}{u^2 + M(1-u)^2}$; right: $f'(u) = \frac{2Mu(1-u)}{(u^2+M(1-u)^2)^2}$. $\alpha = \sqrt{\frac{M}{M+1}}$. $\alpha \approx 0.8165$ for M = 2.

nac

◆ロ > ◆母 > ◆臣 > ◆臣 >

Buckley-Leverett Equation

Monotone Solution for BL Equation

Entropy solution for the Riemann initial problem has been well studied [5, 7]. Let α be the solution of $f'(u) = \frac{f(u)}{u}$, i.e.,

$$\alpha = \sqrt{\frac{M}{M+1}}. \quad \alpha \approx 0.8165 \text{ for } M = 2.$$

1. If $0 < u_B \le \alpha$, the entropy solution has a single shock at $\frac{x}{t} = \frac{f(u_B)}{u_B}$. 2. If $\alpha < u_B < 1$, the entropy solution contains a rarefaction between u_B and α for $f'(u_B) < \frac{x}{t} < f'(\alpha)$ and a shock at $\frac{x}{t} = \frac{f(\alpha)}{\alpha}$.

Buckley-Leverett Equation

Experiment Results

Figure: Snapshots of the saturation profile versus depth for six different applied fluxes in initially dry 20/30 sand measured using light transmission [2].

Overshoots \Rightarrow Nonmonotone profile \Rightarrow Modified BL Equation (MBL).

Buckley-Leverett Equation

Experiment Results

Figure: Snapshots of the saturation profile versus depth for six different applied fluxes in initially dry 20/30 sand measured using light transmission [2].

 $Overshoots \Rightarrow \mathsf{Nonmonotone} \text{ profile} \Rightarrow \mathsf{Modified} \underset{\mathsf{BL}}{\mathsf{BL}} \underset{\mathsf{Equation}}{\mathsf{Equation}} (\mathsf{MBL})_{\mathsf{Equation}}$

Buckley-Leverett Equation

Experiment Results

Figure: Snapshots of the saturation profile versus depth for six different applied fluxes in initially dry 20/30 sand measured using light transmission [2].

 $\mathsf{Overshoots} \Rightarrow \mathsf{Nonmonotone} \ \mathsf{profile} \Rightarrow \mathsf{Modified} \ \mathsf{BL} \ \mathsf{Equation} \ (\mathsf{MBL}).$

Buckley-Leverett Equation

Experiment Results

Figure: Snapshots of the saturation profile versus depth for six different applied fluxes in initially dry 20/30 sand measured using light transmission [2].

 $\mathsf{Overshoots} \Rightarrow \mathsf{Nonmonotone} \text{ profile} \Rightarrow \mathsf{Modified} \ \mathsf{BL} \ \mathsf{Equation} \ (\mathsf{MBL}).$

naa

Introduction	MBL Equation	Fast Explicit Operator Splitting Method	Numerical Results	Higher Dimension	References
00000	00000	0000000	000000000	000000000	

Outlines

2 MBL Equation

Fast Explicit Operator Splitting Method

Numerical Results

. -

< □ > < 同 > < 三 >

nac

Introduction	MBL Equation	Fast Explicit Operator Splitting Method	Numerical Results	Higher Dimension	References
00000	00000	000000	000000000	000000000	
MBL Equatio	n				

Modified BL Equation (MBL)

Hassanizadeh and Gray [3, 4] have included the extra terms to model the *dynamic* effects in the capillary pressure between the two phases, and 1-D MBL Equation reads as

$$u_t + f(u)_x = \epsilon u_{xx} + \epsilon^2 \tau u_{xxt}, \quad \epsilon > 0, \ \tau > 0,$$

where

$$f(u) = \frac{u^2}{u^2 + M(1-u)^2}, \qquad M = \frac{\mu_w}{\mu_o}$$

- Classical second order viscous term ϵu_{xx}
- Third order mixed derivative term $\epsilon^2 \tau u_{xxt}$
- ϵ is the diffusion coefficient. (ϵ, τ) determine the type of the solution profile. When τ is larger than the threshold value τ_* , the solution profile is non-monotone.

イロト イポト イヨト イヨト

Introduction	MBL Equation	Fast Explicit Operator Splitting Method	Numerical Results	Higher Dimension	References
00000	00000	000000	000000000	000000000	
MBL Equatio	n				

Modified BL Equation (MBL)

Hassanizadeh and Gray [3, 4] have included the extra terms to model the *dynamic* effects in the capillary pressure between the two phases, and 1-D MBL Equation reads as

$$u_t + f(u)_x = \epsilon u_{xx} + \epsilon^2 \tau u_{xxt}, \quad \epsilon > 0, \ \tau > 0,$$

where

$$f(u) = \frac{u^2}{u^2 + M(1-u)^2}, \qquad M = \frac{\mu_w}{\mu_o}$$

- Classical second order viscous term ϵu_{xx}
- Third order mixed derivative term $\epsilon^2 \tau u_{xxt}$
- *ϵ* is the diffusion coefficient. (*ϵ*, *τ*) determine the type of the solution
 profile. When *τ* is larger than the threshold value *τ*_{*}, the solution
 profile is non-monotone.

C.-Y. Kao, A. Kurganov, Z. Qu, Y. Wang

Introduction	MBL Equation	Fast Explicit Operator Splitting Method	Numerical Results	Higher Dimension	References
00000	00000	000000	0000000000	0000000000	
MBL Equation					

2-D MBL Equation

Two dimensional MBL Equation is

$$u_t + f(u)_x + g(u)_y = \epsilon \Delta u + \epsilon^2 \tau \Delta u_t$$

where

$$f(u) = \frac{u^2}{u^2 + M(1-u)^2},$$

$$g(u) = f(u)(1 - C(1-u)^2).$$

C.-Y. Kao, A. Kurganov, Z. Qu, Y. Wang

April 1, 2014 11 / 48

3

900

イロト イポト イヨト イヨト

Introduction	MBL Equation	Fast Explicit Operator Splitting Method	Numerical Results	Higher Dimension	References
00000	00000	000000	0000000000	0000000000	
MBL Equation					

BL v.s. MBL

$$u_t + f(u)_x = 0$$
$$u_t + f(u)_x = \epsilon u_{xx} + \epsilon^2 \tau u_{xxt}$$

- The classical BL equation is hyperbolic. The numerical schemes for hyperbolic equations have been well-developed.
- The MBL equation, however, is pseudo-parabolic.
 Van Duijn et al [6]: first order finite difference scheme.
 Wang et al [8, 7]: second- and third-order Godunov-type staggered central schemes (1-D MBL equation).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Introduction	MBL Equation	Fast Explicit Operator Splitting Method	Numerical Results	Higher Dimension	References
00000	00000	000000	000000000	000000000	
MBL Equation					

Difficulty

General convection-diffusion equation:

$$u_t + f(u)_x = \epsilon u_{xx}$$

In the convection dominated case, some numerical schemes have

- extensive numerical viscosity: the solution under-resolved
- spurious oscillations near the shock

Figure: Solution of convection-diffusion equation. Solid line: the initial data.

Image: A math a math

Э

SQC

Introduction	MBL Equation	Fast Explicit Operator Splitting Method	Numerical Results	Higher Dimension	References
00000	00000	000000	0000000000	000000000	
MBL Equation					

To overcome these difficulties

- Fast Explicit Operator Splitting (FEOS) Method :
 - Chertock A, Kurganov A, Petrova G. Fast explicit operator splitting method for convection-diffusion equations. *International Journal for Numerical Methods in Fluids*, 2009, 59(3): 309-332.
 - Chertock A, Kurganov A. On splitting-based numerical methods for convection-diffusion equations. *Numerical Methods for Balance Laws, Aracne editrice Srl, Rome,* 2010.
- numerically preserving a delicate balance between the convection and diffusion terms.

Introduction	MBL Equation	Fast Explicit Operator Splitting Method	Numerical Results	Higher Dimension	References
00000	00000	000000	000000000	000000000	

Outlines

2 MBL Equation

3 Fast Explicit Operator Splitting Method

- 4 Numerical Results
- 5 Higher Dimension
- 6 References

э

∃ ▶ ∢

- 4 🗇 ▶

nac

Convection-diffusion equation

Fast Explicit Operator Splitting (FEOS) Method

$$u_t + f(u)_x = \epsilon u_{xx}$$

Split the equation into two sub-equations:

$$u_t + f(u)_x = 0$$
$$u_t = \epsilon u_{xx}$$

- Second-order Strang splitting method
- Nonlinear: hyperbolic problem \rightarrow finite-volume Godunov-type scheme
- Linear:
 - exact solution of the heat equation \rightarrow approximated by a conservative and accurate quadrature formula. *e.g.* midpoint rule
 - pseudo-spectral method
- Splitting timestep: $\Delta t \sim \Delta x$

C.-Y. Kao, A. Kurganov, Z. Qu, Y. Wang

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Convection-diffusion equation

Fast Explicit Operator Splitting (FEOS) Method

$$u_t + f(u)_x = \epsilon u_{xx}$$

Split the equation into two sub-equations:

$$u_t + f(u)_x = 0$$
$$u_t = \epsilon u_{xx}$$

- Second-order Strang splitting method
- Nonlinear: hyperbolic problem \rightarrow finite-volume Godunov-type scheme
- Linear:
 - exact solution of the heat equation \rightarrow approximated by a conservative and accurate quadrature formula. *e.g.* midpoint rule
 - pseudo-spectral method
- Splitting timestep: $\Delta t \sim \Delta x$

C.-Y. Kao, A. Kurganov, Z. Qu, Y. Wang

<ロト <同ト < ヨト < ヨト

Convection-diffusion equation

Fast Explicit Operator Splitting (FEOS) Method

$$u_t + f(u)_x = \epsilon u_{xx}$$

Split the equation into two sub-equations:

$$u_t + f(u)_x = 0$$
$$u_t = \epsilon u_{xx}$$

• Second-order Strang splitting method

- Nonlinear: hyperbolic problem \rightarrow finite-volume Godunov-type scheme
- Linear:
 - exact solution of the heat equation \rightarrow approximated by a conservative and accurate quadrature formula. *e.g.* midpoint rule
 - pseudo-spectral method
- Splitting timestep: $\Delta t \sim \Delta x$

C.-Y. Kao, A. Kurganov, Z. Qu, Y. Wang

< 日 > < 同 > < 三 > < 三 >

Convection-diffusion equation

Fast Explicit Operator Splitting (FEOS) Method

$$u_t + f(u)_x = \epsilon u_{xx}$$

Split the equation into two sub-equations:

$$u_t + f(u)_x = 0$$
$$u_t = \epsilon u_{xx}$$

- Second-order Strang splitting method
- Nonlinear: hyperbolic problem \rightarrow finite-volume Godunov-type scheme
- Linear:
 - exact solution of the heat equation \rightarrow approximated by a conservative and accurate quadrature formula. *e.g.* midpoint rule
 - pseudo-spectral method

• Splitting timestep: $\Delta t \sim \Delta x$

C.-Y. Kao, A. Kurganov, Z. Qu, Y. Wang

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Convection-diffusion equation

Fast Explicit Operator Splitting (FEOS) Method

$$u_t + f(u)_x = \epsilon u_{xx}$$

Split the equation into two sub-equations:

$$u_t + f(u)_x = 0$$
$$u_t = \epsilon u_{xx}$$

- Second-order Strang splitting method
- Nonlinear: hyperbolic problem \rightarrow finite-volume Godunov-type scheme
- Linear:
 - exact solution of the heat equation \rightarrow approximated by a conservative and accurate quadrature formula. *e.g.* midpoint rule
 - pseudo-spectral method
- Splitting timestep: $\Delta t \sim \Delta x$

C.-Y. Kao, A. Kurganov, Z. Qu, Y. Wang

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

Introduction	MBL Equation	Fast Explicit Operator Splitting Method	Numerical Results	Higher Dimension	References	
00000	00000	000000	000000000	0000000000		
MBL Equation						

Splitting Strategy

Take 1-D case for simplicity, and the 2-D case can be done similarly.

How to split the equation?

$$u_t + f(u)_x = \epsilon u_{xx} + \epsilon^2 \tau u_{xxt}$$

$$\begin{cases} u_t + f(u)_x = 0\\ u_t = \epsilon u_{xx} + \epsilon^2 \tau u_{xxt} \end{cases}$$

Not a good choice! We want time derivative appear in both equations. Otherwise

$$S \neq S_1 \circ S_2 + O((\Delta t)^2)$$

Introduction	MBL Equation	Fast Explicit Operator Splitting Method	Numerical Results	Higher Dimension	References	
00000	00000	000000	000000000	0000000000		
MBL Equation						

Splitting Strategy

Take 1-D case for simplicity, and the 2-D case can be done similarly.

How to split the equation?

$$u_t + f(u)_x = \epsilon u_{xx} + \epsilon^2 \tau u_{xxt}$$

$$\begin{cases} u_t + f(u)_x = 0\\ u_t = \epsilon u_{xx} + \epsilon^2 \tau u_{xxt} \end{cases}$$

Not a good choice!

We want time derivative appear in both equations. Otherwise:

$$S \neq S_1 \circ S_2 + O((\Delta t)^2)$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Introduction	MBL Equation	Fast Explicit Operator Splitting Method	Numerical Results	Higher Dimension	References
00000	00000	000000	0000000000	0000000000	
MBL Equatio	n				

Splitting Strategy

Take 1-D case for simplicity, and the 2-D case can be done similarly.

How to split the equation?

$$u_t + f(u)_x = \epsilon u_{xx} + \epsilon^2 \tau u_{xxt}$$

$$\begin{cases} u_t + f(u)_x = 0\\ u_t = \epsilon u_{xx} + \epsilon^2 \tau u_{xxt} \end{cases}$$

Not a good choice!

We want time derivative appear in both equations. Otherwise:

$$S \neq S_1 \circ S_2 + O((\Delta t)^2)$$

イロト イポト イヨト イヨト ニヨ

Introduction	MBL Equation	Fast Explicit Operator Splitting Method	Numerical Results	Higher Dimension	References	
00000	00000	000000	0000000000	0000000000		
MBL Equation						

Our Splitting Strategy

$$u_t + f(u)_x = \epsilon u_{xx} + \epsilon^2 \tau u_{xxt}$$

Rewrite the MBL equation:

$$(u - \epsilon^2 \tau u_{xx})_t + f(u)_x = \epsilon u_{xx}.$$

 S_N : The solution operator associated with the nonlinear hyperbolic equation with flux term

$$(u - \epsilon^2 \tau u_{xx})_t + f(u)_x = 0$$

 S_L : associated with the linear equation with the diffusion term

$$(u-\epsilon^2\tau u_{xx})_t=\epsilon u_{xx}.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction	MBL Equation	Fast Explicit Operator Splitting Method	Numerical Results	Higher Dimension	References	
00000	00000	000000	0000000000	0000000000		
MBL Equation						

Our Splitting Strategy

$$u_t + f(u)_x = \epsilon u_{xx} + \epsilon^2 \tau u_{xxt}$$

Rewrite the MBL equation:

$$(u - \epsilon^2 \tau u_{xx})_t + f(u)_x = \epsilon u_{xx}.$$

 S_N : The solution operator associated with the nonlinear hyperbolic equation with flux term

$$(u - \epsilon^2 \tau u_{xx})_t + f(u)_x = 0$$

 S_L : associated with the linear equation with the diffusion term

$$(u-\epsilon^2\tau u_{xx})_t=\epsilon u_{xx}.$$

< 日 > < 同 > < 三 > < 三 >

Introduction	MBL Equation	Fast Explicit Operator Splitting Method	Numerical Results	Higher Dimension	References			
00000	00000 00000 00 00000 000000000 00000000							
MBL Equation								

Our Splitting Strategy

$$u_t + f(u)_x = \epsilon u_{xx} + \epsilon^2 \tau u_{xxt}$$

Rewrite the MBL equation:

$$(u - \epsilon^2 \tau u_{xx})_t + f(u)_x = \epsilon u_{xx}.$$

 S_N : The solution operator associated with the nonlinear hyperbolic equation with flux term

$$(u-\epsilon^2\tau u_{xx})_t+f(u)_x=0$$

 S_L : associated with the linear equation with the diffusion term

$$(u-\epsilon^2\tau u_{xx})_t=\epsilon u_{xx}.$$

◆□▶ ◆掃▶ ◆ヨ▶ ◆ヨ▶ ヨー の々や

Introduction	MBL Equation	Fast Explicit Operator Splitting Method	Numerical Results	Higher Dimension	References
00000	00000	000000	000000000	0000000000	
MRI Equatio					

Splitting Strategy conti

Assume the solution of the MBL equation u(x, t) is available at time t, then after a small time step Δt , a first order splitting method consists of two steps:

$$u(x,t+\Delta t)=S_L(\Delta t)S_N(\Delta t)u(x,t)$$

The second order operator splitting method consists of three steps:

$$u(x,t+\Delta t) = S_N(\frac{\Delta t}{2})S_L(\Delta t)S_N(\frac{\Delta t}{2})u(x,t)$$

C.-Y. Kao, A. Kurganov, Z. Qu, Y. Wang

00000 00000000 0000000 00000000 0000000	Introduction	MBL Equation	Fast Explicit Operator Splitting Method	Numerical Results	Higher Dimension	References
	00000	00000	000000	000000000	0000000000	

S_N : Nonlinear Step

$$(u-\epsilon^2\tau u_{xx})_t+f(u)_x=0$$

$$\begin{cases} v_t + f(u)_x = 0, \\ u - \epsilon^2 \tau u_{xx} = v. \end{cases}$$

• Semi-discrete scheme:

$$\frac{dv_j(t)}{dt} = \frac{H_{j+\frac{1}{2}} - H_{j-\frac{1}{2}}}{\Delta x}$$

 $H_{i+\frac{1}{2}}$: Godunov-type central-upwind scheme. To discretize the flux:

- nonlinear Minmod limiter
- WENO5 reconstruction
- Integrate in time by third-order SSP Runge-Kutta method.

3

00000 00000000 0000000 00000000 0000000	Introduction	MBL Equation	Fast Explicit Operator Splitting Method	Numerical Results	Higher Dimension	References
	00000	00000	000000	000000000	0000000000	

S_N : Nonlinear Step

$$(u-\epsilon^2\tau u_{xx})_t+f(u)_x=0$$

$$\begin{cases} v_t + f(u)_x = 0, \\ u - \epsilon^2 \tau u_{xx} = v. \end{cases}$$

• Semi-discrete scheme:

$$\frac{dv_j(t)}{dt} = \frac{H_{j+\frac{1}{2}} - H_{j-\frac{1}{2}}}{\Delta x}$$

 $H_{i+\frac{1}{2}}$: Godunov-type central-upwind scheme. To discretize the flux:

- nonlinear Minmod limiter
- WENO5 reconstruction
- Integrate in time by third-order SSP Runge-Kutta method.

3

00000 00000000 0 000000 00000000 00000000	Introduction	MBL Equation	Fast Explicit Operator Splitting Method	Numerical Results	Higher Dimension	References
	00000	00000	000000	000000000	000000000	

S_N : Nonlinear Step

$$(u-\epsilon^2\tau u_{xx})_t+f(u)_x=0$$

$$\begin{cases} v_t + f(u)_x = 0, \\ u - \epsilon^2 \tau u_{xx} = v. \end{cases}$$

• Semi-discrete scheme:

$$\frac{dv_j(t)}{dt} = \frac{H_{j+\frac{1}{2}} - H_{j-\frac{1}{2}}}{\Delta x}$$

 $H_{j+\frac{1}{2}}$: Godunov-type central-upwind scheme. To discretize the flux:

- nonlinear Minmod limiter
- WENO5 reconstruction
- Integrate in time by third-order SSP Runge-Kutta method.

Introduction	MBL Equation	Fast Explicit Operator Splitting Method	Numerical Results	Higher Dimension	References
00000	00000	0000000	000000000	000000000	

S_N : Nonlinear Step conti.

$$\begin{cases} v_t + f(u)_x = 0, \\ u - \epsilon^2 \tau u_{xx} = v. \end{cases}$$

• At each stage of Runge-Kutta method, the elliptic equation is solved by the spectral method.

Take Fast Fourier Transform (FFT)

2

$$\begin{split} \tilde{u} &- \epsilon^2 \tau (ik)^2 \tilde{u} = \tilde{v}, \\ (1 + \epsilon^2 \tau k^2) \tilde{u} = \tilde{v}. \\ \tilde{u} &= \frac{\tilde{v}}{1 + \epsilon^2 \tau k^2} \end{split}$$

< □ > < 同 > < 三 >

Introduction	MBL Equation	Fast Explicit Operator Splitting Method	Numerical Results	Higher Dimension	References
00000	00000	0000000	000000000	000000000	

S_N : Nonlinear Step conti.

$$\begin{cases} v_t + f(u)_x = 0, \\ u - \epsilon^2 \tau u_{xx} = v. \end{cases}$$

 At each stage of Runge-Kutta method, the elliptic equation is solved by the spectral method.

Take Fast Fourier Transform (FFT)

$$\begin{split} \tilde{u} &- \epsilon^2 \tau (ik)^2 \tilde{u} = \tilde{v}, \\ (1 + \epsilon^2 \tau k^2) \tilde{u} &= \tilde{v}. \\ \tilde{u} &= \frac{\tilde{v}}{1 + \epsilon^2 \tau k^2} \end{split}$$

Take the Inverse FFT

C.-Y. Kao, A. Kurganov, Z. Qu, Y. Wang

< 日 > < 同 > < 三 > < 三 >

MBL Equation

S_L : Linear Step

$$(u - \epsilon^2 \tau u_{xx})_t = \epsilon u_{xx}$$

Linear equation, by using spectral method, we get

$$(\tilde{u} - \epsilon^2 \tau (ik)^2 \tilde{u})_t = \epsilon (ik)^2 \tilde{u},$$

 $\tilde{u}_t = \frac{-\epsilon k^2}{1 + \epsilon^2 \tau k^2} \tilde{u}.$

Therefore,

$$\widetilde{u}(x,t+\Delta t) = \exp(rac{-\epsilon k^2 \Delta t}{1+\epsilon^2 au k^2})\widetilde{u}(x,t)$$

Э

SQC

イロト イポト イヨト イヨト

Introduction	MBL Equation	Fast Explicit Operator Splitting Method	Numerical Results	Higher Dimension	References
00000	00000	0000000	000000000	000000000	

Outlines

- 2 MBL Equation
- 3 Fast Explicit Operator Splitting Method
- 4 Numerical Results
- 5 Higher Dimension
- 6 References

э

-

< □ > < 同 > < 三 >

nac

Introduction	MBL Equation	Fast Explicit Operator Splitting Method	Numerical Results	Higher Dimension	References
00000	00000	000000	• 000 000000	0000000000	
Accuracy Tes	t				

Linear Problem

Test the accuracy on solving the equation with linear flux

$$u_t + au_x = \epsilon u_{xx} + \epsilon^2 \tau u_{xxt},$$

In 2D, we consider the equation

$$u_t + au_x + bu_y = \epsilon \Delta u + \epsilon^2 \tau (\Delta u)_t.$$

Initial condition is

$$u(x,0) = \sin(\pi x)$$
 $x \in [0,2]$
 $u(x,y,0) = \sin(\pi x) + \sin(\pi y)$ $(x,y) \in [0,2] \times [0,2]$

< 日 > < 同 > < 三 > < 三 >

= 900

Introduction	MBL Equation	Fast Explicit Operator Splitting Method	Numerical Results	Higher Dimension	References
00000	00000	0000000	000000000	0000000000	
Accuracy Tor	•				

1D

$$u_t + au_x = \epsilon u_{xx} + \epsilon^2 \tau u_{xxt}$$

The accuracy test for second-order central-upwind scheme for 1D equation with a = 1, $\epsilon = 10^{-3}$ and $\tau = 5$.

N	L_1 error	order	L ₂ error	order	L_∞ error	order
64	1.4755E-02	-	1.3400E-02	-	2.4467E-02	-
128	2.6529E-03	2.4755	2.4454E-03	2.4541	5.9092E-03	2.0498
256	4.5606E-04	2.5403	3.7676E-04	2.6983	9.7694E-04	2.5966
512	1.0240E-04	2.1551	8.0050E-05	2.2347	1.1068E-04	3.1418
1024	2.5122E-05	2.0272	1.9691E-05	2.0233	1.9653E-05	2.4936
2048	6.2732E-06	2.0017	4.9248E-06	1.9994	4.9236E-06	1.9969

The convergence rate is second order.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

SQC

Introduction	MBL Equation	Fast Explicit Operator Splitting Method	Numerical Results	Higher Dimension	References
00000	00000	0000000	000000000	0000000000	
Accuracy Top	+				

1D

$$u_t + au_x = \epsilon u_{xx} + \epsilon^2 \tau u_{xxt}$$

The accuracy test for WENO5 scheme for 1D equation with a = 1, $\epsilon = 10^{-3}$ and $\tau = 5$.

Ν	L_1 error	order	L_2 error	order	L_∞ error	order
64	1.3145E-05	-	1.0293E-05	-	1.0782E-05	-
128	8.6308E-07	3.9289	6.7674E-07	3.9269	6.7037E-07	4.0076
256	8.3592E-08	3.3681	6.5634E-08	3.3661	6.4986E-08	3.3667
512	9.6942E-09	3.1082	7.6128E-09	3.1079	7.5732E-09	3.1012
1024	1.1924E-09	3.0233	9.3638E-10	3.0233	9.3454E-10	3.0186
2048	1.5306E-10	2.9617	1.2021E-10	2.9616	1.2057E-10	2.9544

The convergence rate is third order.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Sac

Introduction	MBL Equation	Fast Explicit Operator Splitting I	Method	Numerical Results	Higher Dimension	References
00000	00000	0000000		000000000	000000000	
Accuracy Tes	t					

2D

$$u_t + au_x + bu_y = \epsilon \Delta u + \epsilon^2 \tau (\Delta u)_t$$

The accuracy test for WENO5 scheme for 2D equation with a = 1, b = 1, $\epsilon = 10^{-3}$ and $\tau = 5$.

N	L ₁ error	order	L ₂ error	order	L_∞ error	order
64	3.3396E-05	-	2.0586E-05	-	2.1565E-05	-
128	2.1915E-06	3.9297	1.3535E-06	3.9269	1.3407E-06	4.0076
256	2.1273E-07	3.3648	1.3127E-07	3.3661	1.2997E-07	3.3667
512	2.4679E-08	3.1077	1.5226E-08	3.1079	1.5146E-08	3.1012
1024	3.0370E-09	3.0226	1.8736E-09	3.0226	1.8690E-09	3.0185

The convergence rate is third order.

< 日 > < 同 > < 三 > < 三 >

500

Comparison between second order central-upwind and WENO5 methods

Nonlinear Problem

We first solve the one-dimensional MBL equation

$$u_t + f(u)_x = \epsilon u_{xx} + \epsilon^2 \tau u_{xxt},$$

with the initial condition

$$u(x,0) = \begin{cases} u_B, & \text{if } x \in (0.75, 2.25), \\ 0, & \text{otherwise}, \end{cases}$$

on the domain [0,3] with periodic boundary condition.

$$f(u) = \frac{u^2}{u^2 + M(1-u)^2}$$

Here, $\epsilon = 10^{-3}$, M = 1/2, and final time T = 0.5.

イロト 不得 トイヨト イヨト 二日

April 1, 2014 29 / 48

(a) $u_B > \bar{u} \Rightarrow rarefaction + shock$

- (b) $\underline{u} < u_B < \overline{u} \Rightarrow \text{jump up} + \text{jump down (shock)}$ (Oscillation may appear near $u = u_B$)
- (c) $u_B < \underline{u} \Rightarrow$ single shock (Oscillation may appear near $u = u_B$)

< □ > < 同 >

Comparison between second order central-upwind and WENO5 methods

Case 1: $u_B > \bar{u}$: $u_B = 0.85, \tau = 3.5$

By bifurcation diagram: $\bar{u} \approx 0.698$

C.-Y. Kao, A. Kurganov, Z. Qu, Y. Wang

April 1, 2014 31 / 48

- (E

< □ > < 同 > < 三 >

Comparison between second order central-upwind and WENO5 methods

Case 2: $\underline{u} < u_B < \overline{u}$: $u_B = 0.66, \tau = 5$

By bifurcation diagram: $\bar{u} \approx 0.713$ non-monoton solution profile.

C.-Y. Kao, A. Kurganov, Z. Qu, Y. Wang

April 1, 2014 32 / 48

<ロト <同ト < ヨト < ヨト

nac

Comparison between second order central-upwind and WENO5 methods

Case 3: $\underline{u} < u_B < \overline{u}$: $u_B = 0.52, \tau = 5$

By bifurcation diagram: $\bar{u} \approx 0.713$ non-monoton solution profile. Oscillation?

C.-Y. Kao, A. Kurganov, Z. Qu, Y. Wang

April 1, 2014 33 / 48

< □ > < 同 > < 回 > <

Comparison between second order central-upwind and WENO5 methods

Case 3: $\underline{u} < u_B < \overline{u}$: $u_B = 0.52, \tau = 5$

By bifurcation diagram: $\bar{u} \approx 0.713$ non-monoton solution profile. Oscillation?

C.-Y. Kao, A. Kurganov, Z. Qu, Y. Wang

April 1, 2014 33 / 48

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction	MBL Equation	Fast Explicit Operator Splitting Method	Numerical Results	Higher Dimension	References
00000	00000	0000000	000000000	000000000	

Outlines

- 2 MBL Equation
- 3 Fast Explicit Operator Splitting Method
- 4 Numerical Results
- **5** Higher Dimension
 - 6 References

э

- (E

< □ > < 同 > < 三 >

nac

Comparison between flux functions

Flux
$$f(u)$$
 v.s. $g(u)$

$$u_t + f(u)_x + g(u)_y = \epsilon \Delta u + \epsilon^2 \tau \Delta u_t$$

where

$$f(u) = \frac{u^2}{u^2 + M(1-u)^2},$$

$$g(u) = f(u)(1 - C(1-u)^2).$$

In our computations, we take C = 2.

Computation domain is [0, 13] and the initial value is

$$u_0(x) = \left\{ egin{array}{cc} u_B & x \in [4,10], \ 0 & ext{otherwise}. \end{array}
ight.$$

T = 1.2, N = 16384

C.-Y. Kao, A. Kurganov, Z. Qu, Y. Wang

3

Sac

イロト イポト イヨト イヨト

Comparison between flux functions

Flux
$$f(u)$$
 v.s. $g(u)$

$$u_t + f(u)_x + g(u)_y = \epsilon \Delta u + \epsilon^2 \tau \Delta u_t$$

where

$$f(u) = \frac{u^2}{u^2 + M(1-u)^2},$$

$$g(u) = f(u)(1 - C(1-u)^2).$$

In our computations, we take C = 2.

Computation domain is [0, 13] and the initial value is

$$u_0(x) = \left\{ egin{array}{cc} u_B & x \in [4,10], \ 0 & ext{otherwise}. \end{array}
ight.$$

 $T = 1.2, \quad N = 16384.$

C.-Y. Kao, A. Kurganov, Z. Qu, Y. Wang

3

Sac

イロト イポト イヨト イヨト

Introduction	MBL Equation	Fast Explicit Operator Splitting Method	Numerical Results	Higher Dimension References
00000	00000	000000	000000000	00000000
Commonian h	ature on floor former	tana.		

In order to compute the solution profiles associated with two different fluxes f and g, we choose nine representative pairs of (τ, u_B) values.

(0.2, 0.85)	(0.65, 0.85)	(3.5, 0.85)
(0.2, 0.68)	(0.65, 0.68)	(3.5, 0.68)
(0.2, 0.55)	(0.65, 0.55)	(3.5, 0.55)

Comparison between flux functions

bifurcation diagram

C.-Y. Kao, A. Kurganov, Z. Qu, Y. Wang

MBL Equations

Introduction	MBL Equation	Fast Explicit Operator Splitting Method	Numerical Results	Higher Dimension References
00000	00000	000000	000000000	00000000

2-D Rotational BL and MBL Equations

$$u_t + \nabla \cdot \left(\vec{V} \frac{u^2}{u^2 + M(1-u)^2} \right) = h(\Delta u, \Delta u_t)$$

where $\vec{V}(x) = [y, -x]$, and M = 2 with the initial condition

$$u(x, y, 0) = \begin{cases} \sqrt{\frac{2}{3}}, & \text{if } x^2 + y^2 \leq 1, \ 0 \leq \theta \leq \frac{\pi}{2}, \\ 0, & \text{otherwise.} \end{cases}$$

Our computational domain is $[-2, 2]^2$.

Classical BL Equation: $h(\Delta u, \Delta u_t) = 0$ Modified BL Equation: $h(\Delta u, \Delta u_t) = \epsilon \Delta u + \epsilon^2 \tau \Delta u_t$ Here, $\epsilon = 10^{-3}$ and $\tau = 5$.

◆□▶ ◆掃▶ ◆ヨ▶ ◆ヨ▶ ヨー の々や

Introduction	MBL Equation	Fast Explicit Operator Splitting Method	Numerical Results	Higher Dimension References
00000	00000	0000000	000000000	000000000

Introduction	MBL Equation	Fast Explicit Operator Splitting Method	Numerical Results	Higher Dimension References
00000	00000	000000	000000000	0000000000

2-D BL and MBL Equations (1)

$$u_t + f(u)_x + g(u)_y = h(\Delta u, \Delta u_t)$$

where

$$f(u) = \frac{u^2}{u^2 + M(1-u)^2},$$

$$g(u) = f(u)(1 - 2(1-u)^2),$$

with two different initial conditions. The first initial condition is a smooth two-dimensional Gaussian function

$$u(x, y, 0) = 5e^{-20(x^2+y^2)}$$

cut off by a plateau u = 0.85 in the computational domain $[-1.25, 1.25]^2$ with $\tau = 2.5, M = 1/2, \epsilon = 10^{-3}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Introduction	MBL Equation	Fast Explicit Operator Splitting Method	Numerical Results	Higher Dimension References
00000	00000	000000	000000000	0000000000

Introduction	MBL Equation	Fast Explicit Operator Splitting Method	Numerical Results	Higher Dimension References
00000	00000	000000	000000000	000000000

2-D BL and MBL Equations (2)

$$u_t + f(u)_x + g(u)_y = h(\Delta u, \Delta u_t)$$

where

$$f(u) = \frac{u^2}{u^2 + M(1-u)^2},$$

$$g(u) = f(u)(1 - 2(1-u)^2),$$

The second initial condition is a nonsmooth function

$$u(x, y, 0) = \begin{cases} u_B, & \text{if } 0.75 \le |x| \le 2.25, & \text{or } 0.75 \le |y| \le 2.25, \\ 0, & \text{otherwise} \end{cases}$$

in the computational domain $[0,3]^2$ with $\tau = 2.5, M = 1/2$, and $u_B = 0.85$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Introduction	MBL Equation	Fast Explicit Operator Splitting Method	Numerical Results	Higher Dimension	References
00000	00000	0000000	000000000	000000000	

Outlines

- Introduction
- 2 MBL Equation
- 3 Fast Explicit Operator Splitting Method
- 4 Numerical Results
- 5 Higher Dimension

э

-

< □ > < 同 > < 三 >

nac

Introduction	MBL Equation	Fast Explicit Operator Splitting Method	Numerical Results	Higher Dimension	References
00000	00000	000000	000000000	0000000000	

- S.E. Buckley and M.C. Leverett. Mechanism of fluid displacement in sands. Petroleum Transactions, AIME, 146:107–116, 1942.
- D. A. DiCarlo.

Experimental measurements of saturation overshoot on infiltration. *Water Resources Research*, 40:4215.1 – 4215.9, April 2004.

S.M Hassanizadeh and W.G. Gray.

Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries.

Adv. Water Resour., 13:169–186, 1990.

 S.M Hassanizadeh and W.G. Gray. Thermodynamic basis of capillary pressure in porous media. Water Resour. Res., 29:3389–3405, 1993.

Randall J. LeVeque.

Finite volume methods for hyperbolic problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 2002.

C. J. van Duijn, L. A. Peletier, and I. S. Pop.
 A new class of entropy solutions of the Buckley-Leverett equation.
 SIAM J. Math. Anal., 39(2):507–536 (electronic), 2007.

Ì Y. Wang.

Central schemes for the modified Buckley-Leverett equation. PhD thesis, The Ohio State University, 2010.

🔋 Y. Wang and C.-Y. Kao.

Central schemes for the modified Buckley-Leverett equation. *J. Comput. Sci.*, in press, 2012.

< 日 > < 同 > < 三 > < 三 >

Thank you!

Sar

イロト イポト イヨト イヨ