Fast and stable explicit operator splitting methods for phase-field models
Zhuolin Qu^{1}, Yuanzhen Cheng ${ }^{1}$, Alexander Kurganov ${ }^{1}$ and Tao Tang ${ }^{2}$
Mathematics Department, Tulane University ${ }^{2}$ Department of Mathematics, South University of Science and Technology of China

- MBE equation

Operator splitting methods

Figure 2 : Numerical lagorithm for MBE equation

* pseudo-spectral method with fast-fourier transform (FFT):

$\underbrace{\Omega=\left[0, L_{x}\right] \times\left[0, L_{y]}\right]}_{\text {exact solution }} \quad \begin{gathered}r=\left(\frac{2 \pi}{L_{x}}\right)^{2}+\left(\frac{2 \pi}{L_{i}}\right)^{2}\end{gathered}$

** $2 m^{\text {th }}$-order finite-difference approximations of the nonlinear part:
$\frac{d u_{j, k}}{d t}=\sum_{p=m}^{m} \alpha_{p} H_{j+p, k}^{x}+\sum_{p=m}^{m} \beta_{p} H_{j, k+p}^{y}$
where $\left\{\alpha_{p}\right\}$ and $\left\{\beta_{p}\right\}$ are coeficicients of the $2 m^{p=-m}$-order centered where $\left\{\alpha_{p}\right.$ and $\left\{\rho_{p}\right\}$ are coeffici
$\left(u_{x}\right)_{j, k}:=\sum_{p=m} \alpha_{p} u_{j p, k}\left(u_{y}\right)_{j, k}:=\sum_{p=m}^{m} \beta_{p} u_{j, k+p}$
$H_{j, k}^{x}:=\left[\left(u_{x}\right)_{j, k}^{2}+\left(u_{y}\right)_{j, k}^{2}\left(u_{x}\right)\right)_{j, k} \quad H_{j, k}^{y}:=\left[\left(u_{u} u_{j, k}^{p=m}+\left(u_{x}\right)_{j, k}^{2}\left(u_{y}\right)\right)_{k, k}\right.$
CH equation: $\quad u_{t}=-\delta \Delta^{2} u+\Delta\left(u^{3}-u\right)$

Figure $3:$ Numerical algorithm for CH equation
$* * * 2 m^{\text {th }}$-order finite-difference approximations of the nonlinear part: $H_{j, k}^{x}=\sum_{p=-m}^{m} \alpha_{p} u_{j+p, k}^{3}$ and $H_{j, k}^{y}=\sum_{p=-m}^{m} \beta_{p} u_{j, k+p}^{3}$
Explicit ODE solver for nonlinear parts
Efficient explicit and stable ODE solver DUMKA3 [4]:
large stability domain
It belongs to a class of Runge-Kutta-Chebyshev method and allows one use much larger timesteps compared with the standard Runge-Kutta methods.
fficient stepsize control
The explicit form retains simplicity, and embedded formulas permit an
efficient stepsize control. efficiens stepsize control. Efficiency can be further improved when the
provides an upper boed provides an upper boun
forward Euler method.

Adaptive splitting timestepping strategy
We adjust the size of splititing steps using the following roughness $w(t)$-dependent monitor function $\Delta t=\max \left(\Delta t_{\text {min }} \frac{\Delta t_{\text {max }}}{\sqrt{1+\alpha\left|w^{\prime}(t)\right|^{2}}}\right), \quad \alpha=$ constant, $\quad w(t)=\sqrt{\frac{1}{|\Omega|} \int_{\Omega}[u(\boldsymbol{x}, t)-\bar{u}(t)]^{2} d \boldsymbol{x}}, \quad$ where $\bar{u}(t)=\frac{1}{|\Omega|} \int_{\Omega} u(\boldsymbol{x}, t) d \boldsymbol{x}$ Numerical examples

- MBE equation $\left(\delta=\begin{array}{r}0.1) \text { subject to the initial condition } \\ u(\boldsymbol{x}, 0)=0.1(\sin 3 x \sin 2 y+\sin 5 x \sin 5 y), ~ \boldsymbol{x} \in[0.2 \pi]^{2}\end{array} \quad \mathrm{CH}\right.$ equation $(\delta=0.01)$ subject to the initial condition

Egure 4 : MBE: (frist row) Contour plots of of; (second row) Contour plots of $|\nabla u|$
- adaptive spliting timestepping leads to similar results as above ones
Figure 5: MBE: ((eft) Energy evolution; (middle) Roughness development; (right) Spliting step evolution (dashed line).
- MBE equation $(\delta=1)$ subject to the initial condition uniformly distributed random number in the
rangee $[-0.001,0.001]$ to each grid point value of $u(\boldsymbol{x}, 0) \cdot \boldsymbol{x} \in[0.1000]^{-1}$

CH equation $(\delta=0.01)$ subject to the initial condition

(o):

 Figur 8. CH: (left) Energy evolution; (middle) Roughness development; (right) Splitting step evolution and step evolution. $\Delta t=10^{-2}$ (solid ine) and ada $10^{-3}, \Delta t_{\text {max }}=10^{-2}$ and $\alpha=10^{2}$ (dashed line).
 References

[1] J. W. Cahn and J. E. Hluliard, free energy of a nonuniform system. I.
A. Cucial free energy, J. Chem. Phys., 28 (1958), pp. 258 -rical Methods for

Convection-Diffusion Equations, Quaderni di Matematica, 24 (2009), pp. 303 -343
(3] X. FENG, T. TANG, AND J. YANG, Long time numerial simulations for phase-field problems using) p-adaptive spectral deferred correction mellac
J. Sci. Comput,,
27 (2015), ,
[4] A. Medovikov, High order explicit methods for parabolic equations, BIT, 3 (1998), pp. $372-390$

