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Goal

Develop fast and reliable numerical algorithms for phase-field
models:
•molecular beam epitaxy (MBE) equation with slop selection

ut = −δ∆2u−∇ · [(1− |∇u|2)∇u], x ∈ Ω ⊂ R2

•Cahn-Hilliard (CH) equation
ut = −δ∆2u + ∆(u3 − u), x ∈ Ω ⊂ R2

subject to periodic boundary conditions.

What are phase-field models?

Phase-field models are mathematical models to solve interfacial problems:
Thin film epitaxy the deposition of a crystalline overlayer on a crystalline substrate
→ MBE equation (Figure 1 left)

Phase separation two components of a binary fluid spontaneously separate and form
domains pure in each component → CH equation (Figure 1 right [5])
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Figure 1: MBE (left): thin film epitaxy; CH equation (right): phase separation

Numerical challenges

To numerically solve the models, we have following potential numerical difficulties:
severe timestep restriction (accuracy)

To accurately resolve dynamics, the perturbed biharmonic operator δ∆2(·), which is
involved in the governing equations, may lead to severe restriction on numerical
timestep selection.

long-time simulations (efficiency)
Numerical simulations of phase-field models require long time computations to attain
the steady states (equilibria) of the corresponding phase-field models.

nonlinear energy stability
Strong nonlinearities within energy (defined below) are intrinsic in phase-field
models. Violating the energy stability may lead to nonphysical oscillations.
•

EMBE (u) =
∫

Ω

[
δ

2
|∆u|2 + 1

4
(|∇u|2 − 1)2

]
dx.

•
ECH (u) =

∫
Ω

[
δ

2
|∇u|2 + 1

4
(u2 − 1)2

]
dx.

⇓

balance among solution accuracy, efficiency and nonlinear stability

Operator splitting methods
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Figure 2: Numerical algorithm for MBE equation

∗ pseudo-spectral method with fast-fourier transform (FFT):

IFFT

FFT

exact solution

∗∗ 2mth-order finite-difference approximations of the nonlinear part:
duj,k
dt

=
m∑

p=−m
αpH

x
j+p,k +

m∑
p=−m

βpH
y
j,k+p

where {αp} and {βp} are coefficients of the 2mth-order centered
finite-difference approximations

(ux)j,k :=
m∑

p=−m
αpuj+p,k (uy)j,k :=

m∑
p=−m

βpuj,k+p

Hx
j,k := [(ux)2

j,k + (uy)2
j,k](ux)j,k Hy

j,k := [(uy)2
j,k + (ux)2

j,k](uy)j,k
•CH equation:
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Figure 3: Numerical algorithm for CH equation

∗ ∗ ∗ 2mth-order finite-difference approximations of the nonlinear part:

Hx
j,k =

m∑
p=−m

αpu
3
j+p,k and Hy

j,k =
m∑

p=−m
βpu

3
j,k+p

Explicit ODE solver for nonlinear parts

Efficient explicit and stable ODE solver DUMKA3 [4]:
large stability domain

It belongs to a class of Runge-Kutta-Chebyshev method and allows one to
use much larger timesteps compared with the standard Runge-Kutta
methods.

efficient stepsize control
The explicit form retains simplicity, and embedded formulas permit an
efficient stepsize control. Efficiency can be further improved when the user
provides an upper bound on the timestep stability restriction for the
forward Euler method.

Adaptive splitting timestepping strategy

We adjust the size of splitting steps using the following roughness w(t)-dependent monitor function

∆t = max
∆tmin,

∆tmax√
1 + α|w′(t)|2

 , α = constant, w(t) =
√√√√√ 1
|Ω|

∫
Ω
[u(x, t)− ū(t)]2 dx, where ū(t) = 1

|Ω|
∫

Ω
u(x, t) dx

Numerical examples

1 MBE equation (δ = 0.1) subject to the initial condition
u(x, 0) = 0.1(sin 3x sin 2y + sin 5x sin 5y), x ∈ [0, 2π]2

• constant splitting timestep ∆t = 10−3

t = 0
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Figure 4: MBE: (first row) Contour plots of u; (second row) Contour plots of |∇u|

• adaptive splitting timestepping leads to similar results as above ones.
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Figure 5: MBE: (left) Energy evolution; (middle) Roughness development; (right) Splitting step evolution.
∆t = 10−3 (solid line) and adaptive splitting timestepping with ∆tmin = 10−3, ∆tmax = 10−2 and α = 103

(dashed line).
2 MBE equation (δ = 1) subject to the initial condition uniformly distributed random number in the
range [−0.001, 0.001] to each grid point value of u(x, 0), x ∈ [0, 1000]2
• constant splitting timestep ∆t = 10−1

t = 40000
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Figure 6: MBE: (left two) Contour plots of solution profile; (right two) Contour plots of free energy.

3 CH equation (δ = 0.01) subject to the initial condition
u(x, y, 0) = 0.05 sinx sin y + 0.001, x ∈ [0, 2π]2

• constant splitting timestep ∆t = 10−3

t = 1
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Figure 7: CH: Contour plots of u computed with ∆t = 10−3.

• adaptive splitting timestepping leads to similar results as above ones.
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Figure 8: CH: (left) Energy evolution; (middle) Roughness development; (right) Splitting
step evolution. ∆t = 10−3 (solid line) and adaptive splitting timestepping with ∆tmin =
10−3, ∆tmax = 10−2 and α = 102 (dashed line).
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