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Background

Phase Field Models: mathematical models for interfacial problems

Thin film epitaxy: the deposition of a crystalline overlayer on a
crystalline substrate

growing epitaxial 
           layer

substrate wafer

molecular 
beams

scaled 
height

surface
diffusion
constant

⇒ molecular beam epitaxy (MBE) equation with slop selection

ut = −δ∆2u −∇ · [(1− |∇u|2)∇u], x ∈ Ω ⊂ R2
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Background

Phase separation: two components of a binary fluid spontaneously
separate and form domains pure in each component

binary
concentration 
of component

 interfacial
width

⇒ Cahn-Hilliard (CH) equation:

ut = −δ∆2u + ∆(u3 − u), x ∈ Ω ⊂ R2

T. Cool et al, Gibbs: Phase equilibria and symbolic computation of thermodynamic properties, Calphad, 34 (2010), pp. 393–404
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Numerical Difficulties

Energy Functionals

An important feature of these two equations is that they can be viewed as
the gradient flow of energy functionals:

MBE : ut = −δ∆2u −∇ · [(1− |∇u|2)∇u]

CH : ut = −δ∆2u + ∆(u3 − u)

E (u) =

∫
Ω

[δ
2
|∇u|2 +

1

4
(u2 − 1)2

]
dx

As it has been shown in [Cahn, Hillard; 1958] [Li, Liu; 2003], both energy
functionals decay in time:

E (u(t)) ≤ E (u(s)), ∀t ≥ s
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Numerical Difficulties

Numerical Challenges

(MBE ) ut = −δ∆2u −∇ · [(1− |∇u|2)∇u]

(CH) ut = −δ∆2u + ∆(u3 − u)

Severe Timestep Restriction (accuracy)
To accurately resolve dynamics, the perturbed biharmonic operator
δ∆2(·), which is involved in the governing equations, may lead to
severe restriction on numerical timestep selection.

Long-Time Simulations (efficiency)
Numerical simulations of phase-field models require long time
computations to attain the steady states (equilibria) of the
corresponding phase-field models.

Nonlinear Energy Stability
Strong nonlinearities within energy are intrinsic in phase-field models.
Violating the energy stability may lead to nonphysical oscillations.

Zhuolin Qu Phase-Field Models 6 / 52
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Numerical Difficulties

Semi-Implicit Schemes

Explicit schemes usually suffer from severe stability restrictions caused by
the presence of high-order derivative terms and do not obey the energy
decay property, semi-implicit schemes are widely used.

[Xu,Tang ; 2006] a combined spectral and large-time steeping method
for MBE equation by including an extra stabilization term

[He, Liu,Tang ; 2007] same method was applied to CH equation

[Qiao,Zhang ,Tang ; 2011] unconditional energy stable finite-difference
schemes with adaptive time-stepping strategy

[Zhang ,Qiao; 2012] technique was successfully applied in CH equation

Zhuolin Qu Phase-Field Models 7 / 52
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Operator Splitting Methods

Explicit Operator Splitting Methods for MBE
MBE equation:

Strang splitting

 method

nonlinear part

semi-discrete 
finite-difference

 methods

linear part

pseudo-spectral 
methods

Strang splitting method
SL: exact solution operator associated with linear part
SN : exact solution operator associated with nonlinear part
∆t: a (small) splitting step

u(x , t + ∆t) = SL(∆t/2)SN (∆t)SL(∆t/2)u(x , t)
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Operator Splitting Methods

Linear Part

ut = −∆u − δ∆2u

Pseudo-Spectral method with fast-fourier transform (FFT):

IFFT

FFT

exact solution

Zhuolin Qu Phase-Field Models 10 / 52



Introduction Fast and Stable Explicit Operator Splitting Methods Numerical Examples References

Operator Splitting Methods

Nonlinear Part ut = ∇ · [|∇u|2∇u]
The 1-D version is

ut = (u3
x )x

We consider a uniform grid and introduce the following 2mth-order
centered-difference approximation of the ∂

∂x operator:

(ψx)j :=
m∑

p=−m
αpψj+p = ψx(xj) +O((∆x)2m)

Note that:
α0 = 0 and αp + α−p = 0, p 6= 0

For example, when m = 2, we obtain a fourth-order centered-difference
approximation by taking

α1 = −α−1 =
2

3∆x
α2 = −α−2 = − 1

12∆x
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Operator Splitting Methods

ut = (u3
x )x

We discretize equation using the method of lines as follows:

duj
dt

(t) =
m∑

p=−m
αpHj+p(t)

where uj(t) denotes the computed point value of the solution at (xj , t),
and

Hj(t) := (ux)3
j (t)

with

(ux)j(t) :=
m∑

p=−m
αpuj+p(t)
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Operator Splitting Methods

For 2-D case:
ut = ∇ · [|∇u|2∇u]

We consider a uniform grid, and introduce the following 2mth-order
centered-difference approximation of the ∂

∂x and ∂
∂y operators:

(ψx)j ,k :=
m∑

p=−m
αpψj+p,k = ψx(xj , yk) +O((∆x)2m)

(ψy )j ,k :=
m∑

p=−m
βpψj ,k+p = ψy (xj , yk) +O((∆y)2m)

Note that:

α0 = 0 and αp + α−p = 0, βp + β−p = 0, p 6= 0

Zhuolin Qu Phase-Field Models 13 / 52
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Operator Splitting Methods

2mth-order semi-discrete finite-difference schemes read:

duj ,k
dt

=
m∑

p=−m
αpH

x
j+p,k +

m∑
p=−m

βpH
y
j ,k+p

where

Hx
j ,k := (ux)3

j ,k + (uy )2
j ,k(ux)j ,k and Hy

j ,k := (uy )3
j ,k + (ux)2

j ,k(uy )j ,k

with

(ux)j ,k :=
m∑

p=−m
αpuj+p,k and (uy )j ,k :=

m∑
p=−m

βpuj ,k+p
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Operator Splitting Methods

Physical Property?

Mass Conservation: automatically satisfied by using the flux form

Energy Decay:

E (u) =

∫
Ω

[
δ

2
|∆u|2 +

1

4
(|∇u|2 − 1)2

]
dx = EN (u) + EL(u)

where

EL(u) =

∫
Ω

(
δ

2
|∆u|2 − 1

2
|∇u|2 +

1

4

)
dx

EN (u) =
1

4

∫
Ω
|∇u|4 dx
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Operator Splitting Methods

Theorem (Energy Decay Property in 1-D) The semi-discrete schemes
satisfy the following energy decay property d

dtE
∆
N ≤ 0, where E∆

N is a 1-D
discrete version of the energy functional

E∆
N :=

1

4

∑
j

(ux)4
j ∆x .

Theorem (Energy Decay Property in 2-D) The semi-discrete schemes
satisfy the following energy decay property d

dtE
∆
N ≤ 0, where E∆

N is a 2-D
discrete version of the energy functional:

E∆
N :=

1

4

∑
j

|∇huj ,k |4∆x∆y

with ∇huj ,k := ((ux)j ,k , (uy )j ,k)T .
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Introduction Fast and Stable Explicit Operator Splitting Methods Numerical Examples References

Operator Splitting Methods

Explicit Operator Splitting Methods for CH
CH equation:

nonlinear part

semi-discrete 
finite-difference

 methods

linear part

pseudo-spectral 
methods

Strang splitting

 method

Strang splitting method
SL: exact solution operator associated with linear part
SN : exact solution operator associated with nonlinear part
∆t: a (small) splitting step

u(x , t + ∆t) = SL(∆t/2)SN (∆t)SL(∆t/2)u(x , t)

Zhuolin Qu Phase-Field Models 17 / 52
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Operator Splitting Methods

Nonlinear Part ut = ∆(u3)

We use the same grids and the same 2mth-order discrete approximation of
the ∂

∂x and ∂
∂y operators.

Then, 2mth-order semi-discrete finite-difference schemes read:

duj ,k
dt

=
m∑

p=−m
αpH

x
j+p,k +

m∑
p=−m

βpH
y
j ,k+p

where

Hx
j ,k :=

m∑
p=−m

αpu
3
j+p,k and Hy

j ,k :=
m∑

p=−m
βpu

3
j ,k+p
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Operator Splitting Methods

Energy Decay?

E (u) =

∫
Ω

[
δ

2
|∇u|2 +

1

4
(u2 − 1)2

]
dx = EL(u) + EN (u)

where

EL(u) =

∫
Ω

(
δ

2
|∇u|2 − 1

2
u2 +

1

4

)
dx EN (u) =

1

4

∫
Ω
u4 dx

Theorem (Energy Decay Property) The semi-discrete schemes satisfy the
following energy decay property:

d

dt
E∆
N ≤ 0

where E∆
N is a 2-D discrete version of the energy functional:

E∆
N :=

1

4

∑
j

u4
j ,k∆x∆y
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Large Stability Domain Explicit ODE Solver

ODE Solver

All the obtain ODE systems have to be solved numerically.

Explicit ODE solvers: typically require timesteps to be
∆tODE ∼ (∆x)2

Implicit ODE solvers: can be made unconditionally stable, the
accuracy requirements would limit timestep size;
Moreover, a large nonlinear algebraic system of equations has to be
solved at each timestep, implicit methods may not be efficient

Our approach:

explicit third-order large stability domain Runge-Kutta method

Zhuolin Qu Phase-Field Models 20 / 52
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Large Stability Domain Explicit ODE Solver

DUMKA3 [Medovikov; 1998]

Large Stability Domain:
It belongs to a class of Runge-Kutta-Chebyshev method and allows
one to use much larger timesteps compared with the standard
Runge-Kutta methods.

The explicit form retains simplicity, and embedded formulas permit an
efficient stepsize control

Efficiency can be further improved when the user provides an upper
bound on the timestep stability restriction for the forward Euler
method ∆tFE

⇒ Therefore, we establish such bounds in the following three
theorems.
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Large Stability Domain Explicit ODE Solver

Theorem (∆tFE Bound for 1-D MBE) Assume that the system of ODEs is
numerically integrated by the forward Euler method from time t to
t + ∆tFE and that the following CFL condition holds:

∆tFE ≤
1

am
· 1

max
j

(ux)2
j

a :=
m∑

p=−m
α2
p

Then
‖u(t + ∆tFE)‖L2 ≤ ‖u(t)‖L2

where ‖u(t)‖L2 :=
√∑

j u
2
j (t)∆x .
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Large Stability Domain Explicit ODE Solver

Theorem (∆tFE Bound for 2-D MBE) Assume that the system of ODEs is
numerically integrated by the forward Euler method from time t to
t + ∆tFE and that the following CFL condition holds:

∆tFE ≤
1

4m ·max(a, b)
· 1

max
j ,k
{(ux)2

j ,k , (uy )2
j ,k}

a :=
m∑

p=−m
α2
p b :=

m∑
p=−m

β2
p

Then
‖u(t + ∆tFE)‖L2 ≤ ‖u(t)‖L2

where ‖u(t)‖L2 :=
√∑

j ,k u
2
j ,k(t)∆x∆y .
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Large Stability Domain Explicit ODE Solver

Theorem (∆tFE Bound for 2-D CH) Assume that the system of ODEs is
numerically integrated by the forward Euler method from time t to
t + ∆tFE and that the following CFL condition holds:

∆tFE ≤
1

6m ·max(a, b)
· 1

max
j ,k

u2
j ,k

a :=
m∑

p=−m
α2
p b :=

m∑
p=−m

β2
p

Then
‖u(t + ∆tFE)‖L2 ≤ ‖u(t)‖L2

where ‖u(t)‖L2 :=
√∑

j ,k u
2
j ,k(t)∆x∆y .
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Adaptive Splitting Timestepping Strategy

Idea for Choosing Timesteps
The efficiency of splitting methods hinges on its ability to use (relatively)
large timesteps

small ∆t: the phase transition occurs and the solution changes quite
rapidly

large ∆t: at other times and especially the solution is close to its
steady state

We define the roughness of solution at time t:

w(t) =

√
1

|Ω|

∫
Ω

[u(x , t)− ū(t)]2 dx

where

ū(t) =
1

|Ω|

∫
Ω
u(x , t) dx

is the mean height at time t.
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Adaptive Splitting Timestepping Strategy

We adjust the size of splitting steps using the following
roughness-dependent monitor function [Qiao, Zhang, Tang; 2011]

∆t = max

(
∆tmin,

∆tmax√
1 + α|w ′(t)|2

)
, α = constant

∆tmin: the smallest possible splitting step
∆tmin = δ/100 for the MBE equations
∆tmin = δ/10 for the CH equation

∆tmax: the largest allowed splitting step

α: positively adaption constant

Large |w ′(t)| ⇒ small ∆t: quick motion of the structural transition
Small |w ′(t)| ⇒ large ∆t: slow film growth or slow phase interface motion

a significant reduction of CPU time (3 ∼ 6 more efficient)
without affect the accuracy of the computed solutions
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Numerical Examples

We illustrate the performance of our fast and stable explicit operator
splitting method on several 1-D and 2-D examples. We use

fourth-order finite-difference schemes

both constant and adaptive splitting steps are employed to obtain
numerical solutions
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One-dimensional Morphological Instability

Example 1 — One-Dimensional Morphological Instability

We first consider the 1-D MBE equation

ut = (u3
x )x − uxx − uxxxx

subject to the initial condition

u(x , 0) = 0.1(sin
πx

2
+ sin

2πx

3
+ sinπx), x ∈ [0, 12]

This example was studied in [Li, Liu; 2003] to observe the morphological
instability due to the nonlinear interaction.
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One-dimensional Morphological Instability
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Figure: Example 1: u computed with ∆t = 10−1.
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One-dimensional Morphological Instability

Compared to the results reported in [Li, Liu; 2003], our steady state is in a
good agreement with the one obtained there, while the “buffering” time
evolution is very different.

Figure: Left: [Li, Liu; 2003]; Right: our computation.

Difference in “buffering” time?
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One-dimensional Morphological Instability

We therefore reduce the splitting step by a factor of 10 and repeat the
computation with ∆t = 10−2. ∆tmax = 10−1 ∆tmin = 10−2 α = 103
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One-dimensional Morphological Instability

Monitor the time evolution process by plotting the energy/roughness:
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One-dimensional Morphological Instability

It is instructive to check what splitting steps are used by the adaptive
algorithm:

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

 

 

∆t=10
−2

adaptive

Example N T Splitting step CPU time

1 256 240
constant 3.2805
adaptive 0.9659
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One-dimensional Morphological Instability

Accuracy Test
Experimental convergence rate is close to the expected second-order one.

N ∆t ||uN,∆t − uN/2,2∆t ||1 Rate ||uN,∆t − uN/2,2∆t ||∞ Rate

128 2e-2 3.95e-03 – 7.58e-04 –
256 1e-2 1.07e-03 1.89 2.45e-04 1.63
512 5e-3 2.73e-04 1.97 7.17e-05 1.78

1024 2.5e-3 6.84e-05 1.99 1.93e-05 1.89

Fix the splitting step to be ∆t = 10−3: the experimental convergence rate
is fourth-order, which is the order of finite-difference scheme.

N ∆t ||uN,∆t − uN/2,∆t ||1 Rate ||uN,∆t − uN/2,∆t ||∞ Rate

128 1e-3 8.06e-05 – 2.25e-05 –
256 1e-3 5.18e-06 3.96 1.44e-06 3.96
512 1e-3 3.27e-07 3.99 9.10e-08 3.99

1024 1e-3 2.02e-08 4.02 5.62e-09 4.02
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Two-Dimensional Morphological Instability

Example 2 — Two-Dimensional Morphological Instability

We consider the 2-D MBE equation with δ = 0.1 subject to the following
initial condition:

u(x , 0) = 0.1(sin 3x sin 2y + sin 5x sin 5y), x ∈ [0, 2π]2

This example was studied in [Li, Liu; 2003] [Xu, Tang; 2006] to observe
the morphological instability due to the nonlinear interaction.
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Two-Dimensional Morphological Instability

We compute the solution on a 256× 256 uniform grid with the constant
splitting step ∆t = 10−3. Contour plots of the height profiles:
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Two-Dimensional Morphological Instability

Experimental energy decay and roughness development. Consistent with
[Li, Liu; 2003]; Adaptive strategy: ∆tmin = 10−3 ∆tmax = 10−2 α = 103
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Two-Dimensional Morphological Instability

Experimental energy decay and roughness development. Consistent with
[Li, Liu; 2003]; Adaptive strategy: ∆tmin = 10−3 ∆tmax = 10−2 α = 103
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Two-Dimensional Morphological Instability

Splitting steps evolution shows that ∆t ≈ ∆tmax when the solution
approaches its steady state. This leads to a substantial decrease in CPU
time.
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Example N T Splitting step CPU time

2 256 30
constant 4601.9
adaptive 838.9
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Two-Dimensional Morphological Instability

Accuracy Test

Finally, we perform the mesh-refinement study and verify the experimental
convergence rates are close to the expected second-order one.

N ∆t ||uN,∆t − uN/2,2∆t ||1 Rate ||uN,∆t − uN/2,2∆t ||∞ Rate

64 4e-3 3.36e-03 – 6.01e-04 –
128 2e-3 9.09e-04 1.88 1.55e-04 1.96
256 1e-3 2.48e-04 1.87 4.96e-05 1.64
512 5e-4 6.52e-05 1.93 1.55e-05 1.68
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Coarsening Dynamics

Example 3 — Coarsening Dynamics

In this example, we study the 2-D MBE equation with δ = 1 subject to
random initial data:

assign a uniformly distributed random number in the range
[−0.001, 0.001] to each grid point value of u(x , 0)

use a 512× 512 uniform grid on the computational domain
Ω = [0, 1000]2

Free energy function

Ffree :=
1

4
(|∇u| − 1)2 +

δ

2
|∆u|2

Zhuolin Qu Phase-Field Models 41 / 52



Introduction Fast and Stable Explicit Operator Splitting Methods Numerical Examples References

Coarsening Dynamics

Contour lines of the solution profiles and free energy function (∆t = 0.1)
t = 40000
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Coarsening Dynamics
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Coarsening Dynamics

We present the log-log scale plot of the interface height (left):

ũ(t) =

(
1

|Ω|

∫
Ω
u2(x , t) dx

) 1
2

and the evolution of the mean height ū(t) (right)
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The height of the pyramids grow in time as a power law Ct1/3.

The difference ū(t)− ū(0) remains practically zero at all times ⇒
mass conservation.

Zhuolin Qu Phase-Field Models 43 / 52



Introduction Fast and Stable Explicit Operator Splitting Methods Numerical Examples References

Coarsening Dynamics

Energy, normalized by the domain size, and roughness development
(∆t = 10−1); Adaptive strategy: ∆tmin = 10−1 ∆tmax = 5 α = 1
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The obtained results match the experimental and numerical ones reported
in [Moldovan, Golubovic; 2000] [Xu, Tang; 2006].
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Coarsening Dynamics

Energy, normalized by the domain size, and roughness development
(∆t = 10−1); Adaptive strategy: ∆tmin = 10−1 ∆tmax = 5 α = 1
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Coarsening Dynamics

Splitting step evolution
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The splitting step increases to ∆tmax very soon and then is always taken
close to ∆tmax due to the slow variation of the roughness. This leads to
substantial CPU time usage saving:

Example N T Splitting step CPU time

3 512 80000
constant 223370
adaptive 38775
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Phase Separation

Example 4 — Phase Separation

In this example, taken from [Feng, Tang, Yang; 2015], we consider the 2-D
CH equation with δ = 0.01 subject to the following non-mean-zero initial
condition:

u(x , 0) = 0.05 sin x sin y + 0.001, x ∈ [0, 2π]2

128× 128 uniform grid

constant splitting step ∆t = 10−3
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Phase Separation

Contour plots of solution computed with ∆t = 10−3 (upper row)adaptive
strategy with ∆tmin = 10−3 ∆tmax = 10−2 α = 102 (lower row).
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The solution dynamics can be captured correctly when the adaptive
strategy is employed.
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Phase Separation

Energy and roughness curves
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The curves have some discrepancy with those obtained using the small
constant splitting step ∆t−3, though the adaptive and non-adaptive
solutions are quite close and the resulting steady states seem to be the
same.
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Phase Separation

Splitting steps evolution
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∆t=10−3

adaptive

∆t ≈ ∆tmax when the solution approaches its steady state, which leads to
a substantial saving in CPU time:

Example N T Splitting step CPU time

4 128 20
constant 504.09
adaptive 125.86
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Thanks for your attention.
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