Serial Algorithm 0000 Parallel Algorithm

Test Problem

Conclusion & Future Work

Efficient, Scalable, and Parallelized Computation of Geometric Coefficients for HPC Finite Volume Based Subsurface Flows and Transport Solvers

Zhuolin Qu

Mathematics Department, Tulane University

Carl W. Gable, Satish Karra, Nataliia Makedonska, Jeffrey D. Hyman, and Hari Viswanathan

Introduction	Serial Algorithm 0000	Parallel Algorithm 000	Test Problems	Conclusion & Future Work

Outlines

- What are DFNs?
- Numerical Challenges
- Geometric Coefficients
- Serial Algorithm
 - Calculations of Geometric Coefficients
 - Data Structure
 - A Note

B Parallel Algorithm

- Parallel Calculations of Geometric Coefficients
- Parallel Programming in PETSc
- Test Problems
- 5 Conclusion & Future Work

Introduction ••••	Serial Algorithm 0000	Parallel Algorithm 000	Test Problems	Conclusion & Future Work
What are DFNs?				

Discrete Fracture Network (DFN)

Interconnected networks of fractures act as the principal pathways for transport in relatively impermeable rocks.

DFN model explicitly represents these fractures and therein resolves flow and transport of solutes through the subsurface.

Zhuolin Qu

Introduction ○●○○	Serial Algorithm 0000	Parallel Algorithm 000	Test Problems	Conclusion & Future Work
What are DFNs?				

Subsurface Simulations – *dfnWorks*

Introduction ○●○○	Serial Algorithm 0000	Parallel Algorithm 000	Test Problems	Conclusion & Future Work
What are DFNs?				

Subsurface Simulations – *dfnWorks*

 Introduction
 Serial Algorithm
 Parallel Algorithm
 Test Problems
 Conclusion & Future Work

 ○●○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○○
 ○○○○
 ○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○○
 ○○○○
 ○○○○○
 ○○○○○○○○○○

Bottleneck for Large DFN of High Density

Figure: Workflow chart of *dfnWorks*

Zhuolin Qu

 Introduction
 Serial Algorithm
 Parallel Algorithm
 Test Problems
 Conclusion & Future Work

 00 ● 0
 0000
 000
 000
 Vumerical Challenges

Bottleneck for Large DFN of High Density

Figure: Workflow chart of *dfnWorks*

Zhuolin Qu

 Introduction
 Serial Algorithm
 Parallel Algorithm
 Test Problems
 Conclusion & Future Work

 00 ● 0
 0000
 000
 000
 Vumerical Challenges

Bottleneck for Large DFN of High Density

Figure: Workflow chart of *dfnWorks*

Zhuolin Qu

Introduction	Serial Algorithm	Parallel Algorithm	Test Problems	Conclusion & Future Work
0000				
Geometric Coefficients	5			

Gecometric Coefficients

Coefficients that characterize the geometric feature of the dual Voronoi mesh, including

- Control Volume (of Voronoi cell)
- Area (of the cell interface)

Figure: Geometric Coefficients: Volumes and Areas

Introduction 0000	Serial Algorithm	Parallel Algorithm 000	Test Problems	Conclusion & Future Work

Outlines

Introduction

- What are DFNs?
- Numerical Challenges
- Geometric Coefficients
- 2 Serial Algorithm
 - Calculations of Geometric Coefficients
 - Data Structure
 - A Note

Parallel Algorithm

- Parallel Calculations of Geometric Coefficients
- Parallel Programming in PETSc

Test Problems

5 Conclusion & Future Work

Efficient, Scalable, and Parallelized Computation of Geometric Coefficients

Efficient, Scalable, and Parallelized Computation of Geometric Coefficients

Efficient, Scalable, and Parallelized Computation of Geometric Coefficients

Efficient, Scalable, and Parallelized Computation of Geometric Coefficients

< □ > < ---->

∃ ► < ∃ ►</p>

Efficient, Scalable, and Parallelized Computation of Geometric Coefficients

< □ > < ---->

∃ ► < ∃ ►</p>

< □ > < ---->

∃ ► < ∃ ►</p>

< □ > < ---->

∃ ► < ∃ ►</p>

< □ > < ---->

∃ ► < ∃ ►</p>

Introduction 0000	Serial Algorithm ○○●○	Parallel Algorithm 000	Test Problems	Conclusion & Future Work
Data Structure				

- $\bullet \ \ \mathsf{Volumes} \to \mathsf{diagonal} \ \mathsf{entry}$
- $\bullet \ \mathsf{Areas} \to \mathsf{upper-diagonal} \ \mathsf{entry}$

- Upper triangular matrix
- Sparse matrix: entry = connection

No full dense matrix with lots of 0's \Rightarrow Save memory usage!

Introduction 0000	Serial Algorithm ○○●○	Parallel Algorithm 000	Test Problems	Conclusion & Future Work
Data Structure				

- $\bullet \ \ \mathsf{Volumes} \to \mathsf{diagonal} \ \mathsf{entry}$
- $\bullet \ {\sf Areas} \to {\sf upper-diagonal} \ {\sf entry}$

- Upper triangular matrix
- Sparse matrix: entry = connection

No full dense matrix with lots of 0's \Rightarrow Save memory usage!

Introduction 0000	Serial Algorithm ○○●○	Parallel Algorithm 000	Test Problems	Conclusion & Future Work
Data Structure				

- $\bullet \ \ \mathsf{Volumes} \to \mathsf{diagonal} \ \mathsf{entry}$
- $\bullet \ {\sf Areas} \to {\sf upper-diagonal} \ {\sf entry}$

- Upper triangular matrix
- Sparse matrix: entry = connection

No full dense matrix with lots of 0's \Rightarrow Save memory usage!

Introduction 0000	Serial Algorithm ○○●○	Parallel Algorithm 000	Test Problems	Conclusion & Future Work
Data Structure				

- $\bullet \ \ \mathsf{Volumes} \to \mathsf{diagonal} \ \mathsf{entry}$
- $\bullet \ {\sf Areas} \to {\sf upper-diagonal} \ {\sf entry}$

- Upper triangular matrix
- Sparse matrix: entry = connection

No full dense matrix with lots of 0's \Rightarrow Save memory usage!

Introduction 0000	Serial Algorithm ○○○●	Parallel Algorithm 000	Test Problems	Conclusion & Future Work
A Note				

Same Algorithm for DFN

Efficient, Scalable, and Parallelized Computation of Geometric Coefficients

э

Introduction 0000	Serial Algorithm 0000	Parallel Algorithm	Test Problems	Conclusion & Future Work

Outlines

Introduction

- What are DFNs?
- Numerical Challenges
- Geometric Coefficients
- 2 Serial Algorithm
 - Calculations of Geometric Coefficients
 - Data Structure
 - A Note

3 Parallel Algorithm

- Parallel Calculations of Geometric Coefficients
- Parallel Programming in PETSc

Test Problems

5) Conclusion & Future Work

Introduction Serial Algorithm Parallel Algorithm 0000 0000 •000 Parallel Calculations of Geometric Coefficients

Parallelization: Distribute the Workload

- Read the mesh information through I/O rank.
- Scatter data needed to processors.

- Solume → diagonal entry; Area → upper-diagonal entry
- Gather data to I/O rank and dump to files.

Conclusion & Future Work

Tool – PETSc

- Portable, Extensible Toolkit for Scientific Computation
- a suite of data structures and routines for the scalable (parallel) solution of scientific applications
- Argonne National Laboratory
- http://www.mcs.anl.gov/petsc/

Introduction 0000	Serial Algorithm 0000	Parallel Algorithm ○○●	Test Problems	Conclusion & Future Work
Parallel Programming	in PETSc			

Why PETSc?

- Parallel vectors and matrices
- Sparse matrices data structure and operations
- Support scatter/gather in Message Passing Interface (MPI)
- Intensive error checking (error handler for functions)
- Profiling feature
- Complete and friendly documentation
- Portable to UNIX and Windows
- Being actively supported for many years

Introduction 0000	Serial Algorithm 0000	Parallel Algorithm ○○●	Test Problems	Conclusion & Future Work
Parallel Programming	in PETSc			

Why PETSc?

- Parallel vectors and matrices
- Sparse matrices data structure and operations
- Support scatter/gather in Message Passing Interface (MPI)
- Intensive error checking (error handler for functions)
- Profiling feature
- Complete and friendly documentation
- Portable to UNIX and Windows
- Being actively supported for many years

Introduction 0000	Serial Algorithm 0000	Parallel Algorithm ○○●	Test Problems	Conclusion & Future Work
Parallel Programming	in PETSc			

Why PETSc?

- Parallel vectors and matrices
- Sparse matrices data structure and operations
- Support scatter/gather in Message Passing Interface (MPI)
- Intensive error checking (error handler for functions)
- Profiling feature
- Complete and friendly documentation
- Portable to UNIX and Windows
- Being actively supported for many years

0000 000 000 000	Conclusion & Future Work
Outlines Introduction What are DFNs? Numerical Challenges Geometric Coefficients 	

- 2 Serial Algorithm
 - Calculations of Geometric Coefficients
 - Data Structure
 - A Note

B Parallel Algorithm

- Parallel Calculations of Geometric Coefficients
- Parallel Programming in PETSc

Test Problems

5 Conclusion & Future Work

Introduction 0000	Serial Algorithm 0000	Parallel Algorithm 000	Test Problems	Conclusion & Future Work
Large N	etworks			

- 1475 fractures / 1,320,282 cells (left)
- 17237 fractures / 14,480,540 cells (right)

Efficient, Scalable, and Parallelized Computation of Geometric Coefficients

n Serial Algorithm 0000

Parallel Algorithm

Test Problems

Conclusion & Future Work

17237 fractures / 14,480,540 cells

Zhuolin Qu

Efficient, Scalable, and Parallelized Computation of Geometric Coefficients

Efficient, Scalable, and Parallelized Computation of Geometric Coefficients

Introduction 0000	Serial Algorithm 0000	Parallel Algorithm 000	Test Problems	Conclusion & Future Work
A 11				

Outlines

Introduction

- What are DFNs?
- Numerical Challenges
- Geometric Coefficients
- 2 Serial Algorithm
 - Calculations of Geometric Coefficients
 - Data Structure
 - A Note

B Parallel Algorithm

- Parallel Calculations of Geometric Coefficients
- Parallel Programming in PETSc

Test Problems

5 Conclusion & Future Work

Introduction 0000	Serial Algorithm 0000	Parallel Algorithm 000	Test Problems	Conclusion & Future Work

Conclusion

- Optimizing the computations of geometric coefficients: reduce the overhead memory usage significantly reduce the CPU runtime
- Approach:

dynamic data structure and sparse matrix parallel programming

• Test Problems:

structured/unstructured Delaunay triangle mesh scaling from 10 to 10⁷ cells small/large discrete fracture network mesh

• Outputs:

output coefficients in FEHM STOR file direct PFLOTRAN output direct TOUGH2 output

Introduction 0000	Serial Algorithm 0000	Parallel Algorithm 000	Test Problems	Conclusion & Future Work

Conclusion

- Optimizing the computations of geometric coefficients: reduce the overhead memory usage significantly reduce the CPU runtime
- Approach:

dynamic data structure and sparse matrix parallel programming

• Test Problems:

structured/unstructured Delaunay triangle mesh scaling from 10 to 10^7 cells small/large discrete fracture network mesh

• Outputs:

output coefficients in FEHM STOR file direct PFLOTRAN output direct TOUGH2 output

Introduction 0000	Serial Algorithm 0000	Parallel Algorithm 000	Test Problems	Conclusion & Future Work

Conclusion

- Optimizing the computations of geometric coefficients: reduce the overhead memory usage significantly reduce the CPU runtime
- Approach:

dynamic data structure and sparse matrix parallel programming

Test Problems:

structured/unstructured Delaunay triangle mesh scaling from 10 to 10^7 cells small/large discrete fracture network mesh

• Outputs:

output coefficients in FEHM STOR file direct PFLOTRAN output direct TOUGH2 output

Introduction 0000	Serial Algorithm 0000	Parallel Algorithm 000	Test Problems	Conclusion & Future Work

Future Work

- Instructive diagnostic output (like LaGriT)
- Add scalar/area_scalar option for 2-D in LaGriT (3-D; TOUGH2)
- PFLOTRAN output with triangular control volumes
- Extension: Voronoi \Rightarrow median mesh/hybrid mesh
- Generalization: 2-D triangle mesh \Rightarrow 3-D tetrahedron mesh

Introduction 0000	Serial Algorithm 0000	Parallel Algorithm 000	Test Problems	Conclusion & Future Work

Reference

- J. D. Hyman, C. W. Gable, S. L. Painter, and N. Makedonska. Conforming delaunay triangulation of stochastically generated three dimensional discrete fracture networks: a feature rejection algorithm for meshing strategy. *SIAM Journal on Scientific Computing*, 36(4):A1871–A1894, 2014.
- Los Alamos National Laboratory. Los alamos grid toolbox, (LaGriT). http://lagrit.lanl.gov, 2013.
- P. C. Lichtner, G. E. Hammond, C. Lu, S. Karra, G. Bisht, B. Andre, R. T. Mills, and J. Kumar. Pflotran user manual: A massively parallel reactive flow and transport model for describing surface and subsurface processes. Technical report, Los Alamos National Laboratory, 2015.
 - N. Makedonska, S. L. Painter, Q. M. Bui, C. W. Gable, and S. Karra. Particle tracking approach for transport in three-dimensional discrete fracture networks. *Computation Geosciences*, under review.