Modeling the transmission of *Wolbachia* in mosquitoes for controlling mosquito-borne diseases

Zhuolin Qu

Mathematics Department Tulane University

Ling Xue, University of Manitoba, Canada James (Mac) Hyman, Tulane University, USA

Outlines

- Maternal transmission Wolbachia model
- 3 Bifurcation and Stability Analysis
- Wolbachia-based Mitigation Strategies
- 5 Future Work

A ∃ ► A ∃ ► ∃ | = \0 Q Q

"Mosquitoes cause more human suffering than any other organism."

- American Mosquito Control Association

- dengue fever: flu-like illness: high fever, muscle and joint pains; severe cases: serious bleeding and shock, may be life-threatening
- chikungunya: similar clinical signs, debilitating joint pain, may persist for several months, or even years; can be misdiagnosed
- Zika: no or only mild symptoms; infection during pregnancy can cause microcephaly in the baby (birth defect in brain)

"Mosquitoes cause more human suffering than any other organism."

- American Mosquito Control Association

- dengue fever: flu-like illness: high fever, muscle and joint pains; severe cases: serious bleeding and shock, may be life-threatening
- chikungunya: similar clinical signs, debilitating joint pain, may persist for several months, or even years; can be misdiagnosed
- Zika: no or only mild symptoms; infection during pregnancy can cause microcephaly in the baby (birth defect in brain)

Baby with Typical Head Size

Baby with Microcephaly

Source: https://www.cdc.gov/ncbddd/birthdefects/microcephaly.html

Mosquito-borne diseases

Areas with Risk of Zika

Source: http://www.healthmap.org/zika/#timeline

• Central and South America, sub-Saharan Africa, Southeast Asia, etc...

Aedes aegypti – primary vector for the transmission

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Aedes aegypti – primary vector for the transmission

Aedes aegypti

-

(4) E (4) E (4) E (4)

Aedes aegypti - primary vector for the transmission

- spraying of insecticide (mostly used)
 - financial cost can be prohibitively high
 - logistically difficult in urban/remote areas
 - evolution of resistance
- remove breeding habitats
 - water tank/scrap tires
- introduce natural predators
 - fish to control larvae
- sterile insect technique (SIT)
 - release sterilized male mosquitoes
 - not self-replicating, reduced competitiveness

Aedes aegypti

Aedes aegypti - primary vector for the transmission

- spraying of insecticide (mostly used)
 - financial cost can be prohibitively high
 - logistically difficult in urban/remote areas
 - evolution of resistance
- remove breeding habitats
 - water tank/scrap tires
- introduce natural predators
 - fish to control larvae
- sterile insect technique (SIT)
 - release sterilized male mosquitoes
 - not self-replicating, reduced competitiveness

 \Rightarrow reduce the mosquito population size

Aedes aegypti

(本間) (本語) (本語) (語)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• lack of political importance and thus resources

- lack of political importance and thus resources
- too much emphasis on high technology: space spraying of insecticides

- lack of political importance and thus resources
- too much emphasis on high technology: space spraying of insecticides
- changing lifestyle: automobile, truck tires, etc.

김 국민 지 국민 지 문제 문제

- lack of political importance and thus resources
- too much emphasis on high technology: space spraying of insecticides
- changing lifestyle: automobile, truck tires, etc.
- urbanization ...

► < = ► < = ► = = < < <</p>

- lack of political importance and thus resources
- too much emphasis on high technology: space spraying of insecticides
- changing lifestyle: automobile, truck tires, etc.
- urbanization ...

Reinfestation of tropical America by Aedes aegypti, 1930 - 2011

Source: Gubler DJ. Dengue, Urbanization and Globalization: The Unholy Trinity of the 21st Century. Tropical Medicine and Health. 2011; 39(4 Suppl):3-11.

Zhuolin Qu (Tulane)

Wolbachia Modeling

Wolbachia – fight an epidemic with an epidemic

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Wolbachia – fight an epidemic with an epidemic

Wolbachia – fight an epidemic with an epidemic

Wolbachia – fight an epidemic with an epidemic

Wolbachia blocks the disease transmission to human

Zhuolin Qu (Tulane)

5 / 26

(日) (周) (日) (日) (日) (日) (000)

Wolbachia – fight an epidemic with an epidemic

- Wolbachia blocks the disease transmission to human
- field trials in Australia, Brazil, Columbia, Indonesia, Vietnam to suppress dengue/Zika transmission with promising results

source: Australias Department of Foreign Affairs and Trade (DFAT) & Eliminate Dengue Program

Zhuolin Qu (Tulane)

< ロト < 同ト < ヨト < ヨト

Wolbachia - How does it work?

• Wolbachia is a natural parasitic microbe, found in 60% insect species

Wolbachia - How does it work?

- Wolbachia is a natural parasitic microbe, found in 60% insect species
- complex interaction with its hosts (mutualistic or parasitic)

Wolhachia

Wolbachia - How does it work?

- Wolbachia is a natural parasitic microbe, found in 60% insect species
- complex interaction with its hosts (mutualistic or parasitic)
- it is not found in the wild *Aedes aegypti* mosquitoes

(日) (周) (日) (日) (日) (日) (000)

Wolbachia – How does it work?

- Wolbachia is a natural parasitic microbe, found in 60% insect species
- complex interaction with its hosts (mutualistic or parasitic)
- it is not found in the wild *Aedes aegypti* mosquitoes
- Wolbachia is maternally transmitted from infected mothers to offspring within the mosquito population.

Wolhachia

Wolbachia – How does it work?

- Wolbachia is a natural parasitic microbe, found in 60% insect species
- complex interaction with its hosts (mutualistic or parasitic)
- it is not found in the wild Aedes aegypti mosquitoes
- Wolbachia is maternally transmitted from infected mothers to offspring within the mosquito population.

Schematic of the complex maternal transmission mating

Q+♂→Q♂ uninfected mosquitoes Wolbachia-infected mosquitoes $Q + O' \rightarrow \text{offspring}$ female **O** male $\mathbf{Q} + \mathbf{Q} \rightarrow \mathbf{Q} \mathbf{Q}^{(\%)}$ $Q + \vec{O} \rightarrow Q \vec{O} (\%)$

(日) (周) (王) (王) (王)

Wolbachia - How does it work?

- Wolbachia is a natural parasitic microbe, found in 60% insect species
- complex interaction with its hosts (mutualistic or parasitic)
- it is not found in the wild Aedes aegypti mosquitoes
- *Wolbachia* is maternally transmitted from infected mothers to offspring within the mosquito population.

Schematic of the complex maternal transmission mating

Q+♂→Q♂ uninfected mosquitoes Wolbachia-infected mosquitoes $+ \overrightarrow{O} \rightarrow \text{offspring}$ female **O** male $\mathbf{Q} + \mathbf{Q} \rightarrow \mathbf{Q} \mathbf{Q}$ $+ \mathbf{O} \rightarrow \mathbf{O} \mathbf{O} (\%)$ maternal transmission rate (本間) (本語) (本語) (語)

Wolbachia - How does it work?

- Wolbachia is a natural parasitic microbe, found in 60% insect species
- complex interaction with its hosts (mutualistic or parasitic)
- it is not found in the wild Aedes aegypti mosquitoes
- *Wolbachia* is maternally transmitted from infected mothers to offspring within the mosquito population.

Schematic of the complex maternal transmission mating

Q: How many Wolbachia-infected mosquitoes need to be released?

• Wolbachia is not found in the wild Aedes aegypti mosquitoes

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ 三回 ののの

- Wolbachia is not found in the wild Aedes aegypti mosquitoes
- once a stable infection is established, it could sustain itself in the environment and gives ongoing protection → highly cost-effective

김 글 제 김 제 글 제 글 님

- Wolbachia is not found in the wild Aedes aegypti mosquitoes
- once a stable infection is established, it could sustain itself in the environment and gives ongoing protection \rightarrow highly cost-effective
- difficult to create such stable infection in a wild mosquito population fitness cost due to *Wolbachia* infection:
 - \bigcirc infected female lifespan \downarrow
 - ${}^{\scriptsize ({f i})}$ number of eggs produced \downarrow

- Wolbachia is not found in the wild Aedes aegypti mosquitoes
- once a stable infection is established, it could sustain itself in the environment and gives ongoing protection \rightarrow highly cost-effective
- difficult to create such stable infection in a wild mosquito population fitness cost due to *Wolbachia* infection:
 - \bigcirc infected female lifespan \downarrow
 - ${}^{\scriptsize ({f i})}$ number of eggs produced \downarrow
- small infection will be wiped out by natural mosquitoes

- *Wolbachia* is not found in the wild *Aedes aegypti* mosquitoes
- once a stable infection is established, it could sustain itself in the environment and gives ongoing protection \rightarrow highly cost-effective
- difficult to create such stable infection in a wild mosquito population fitness cost due to *Wolbachia* infection:
 - \bigcirc infected female lifespan \downarrow
 - ${}^{\scriptsize ({f i})}$ number of eggs produced \downarrow
- small infection will be wiped out by natural mosquitoes

- *Wolbachia* is not found in the wild *Aedes aegypti* mosquitoes
- once a stable infection is established, it could sustain itself in the environment and gives ongoing protection \rightarrow highly cost-effective
- difficult to create such stable infection in a wild mosquito population fitness cost due to *Wolbachia* infection:
 - \bigcirc infected female lifespan \downarrow
 - ${}^{\scriptsize ({f i})}$ number of eggs produced \downarrow
- small infection will be wiped out by natural mosquitoes

If there is a tipping point, beyond which the infection could take off?

向下 イヨト イヨト ヨヨ のなら

Critical threshold condition can be quantified with a Mathematical model

 $\frac{Wolbachia-infected mosquitoes}{uninfected mosquitoes} \begin{cases} < \theta, & \text{infection dies out} \\ > \theta, & \text{stable infection} \end{cases}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Zhuolin Qu (Tulane)

Critical threshold condition can be quantified with a Mathematical model

 $\frac{Wolbachia-infected mosquitoes}{uninfected mosquitoes} \begin{cases} < \theta, & \text{infection dies out} \\ > \theta, & \text{stable infection} \end{cases}$

- develop an ODE model to describe the complex transmission cycle
- analyze the threshold condition for having a stable endemic Wolbachia

Outlines

2 Maternal transmission Wolbachia model

- 3 Bifurcation and Stability Analysis
- Wolbachia-based Mitigation Strategies
- 5 Future Work

A ∃ ► A ∃ ► ∃ | = \0 Q Q
Model framework

Our new model captures the complex transmission cycle

by accounting for ...

- two-sex transmission
- multi-stage female life cycle
- carrying capacity for aquatic stage

 $m_{\rm W}$: prop. infected males η_w/η_u : procreation rates v_w : maternal transmission ψ : egg developing rate

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

single males $\begin{cases} M_u = b_m \psi A_u - \mu_{mu} M_u \\ \dot{M}_{uv} = b_m \psi A_{uv} - \mu_{mu} M_u \\ \dot{M}_{uv} = b_m \psi A_{uv} - \mu_{mu} M_u \end{cases}$ single females $\begin{cases} F_u = b_f \psi A_u - (\sigma + \mu_{fu}) F_u \\ \dot{F}_{uv} = b_c \psi A_{uv} - (\sigma + \mu_{fu}) F_{uv} \end{cases}$

aquatic stage
$$\begin{cases} \dot{A}_{u} = (\phi_{u}F_{pu} + v_{u}\phi_{w}) \\ \dot{A}_{w} = v_{w}\phi_{w} \left(1 - \frac{A_{u}}{2}\right) \end{cases}$$

Zhuolin Qu (Tulane)

Outlines

Bifurcation and Stability Analysis

5 Future Work

$$(A_u, A_w, F_u, F_w, F_{pu}, F_{pw}, M_u, M_w)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$(A_u, A_w, F_u, F_w, F_{pu}, F_{pw}, M_u, M_w)$$

• Disease-free Equilibrium (DFE)

- Wolbachia is not naturally found in the wild

$$DFE = (A_u^0, 0, F_u^0, 0, F_{pu}^0, 0, M_u^0, 0)$$

> < = > < = > = = < < < >

$$(A_u, A_w, F_u, F_w, F_{pu}, F_{pw}, M_u, M_w)$$

- Disease-free Equilibrium (DFE)
- Wolbachia is not naturally found in the wild

 $DFE = (A_u^0, 0, F_u^0, 0, F_{pu}^0, 0, M_u^0, 0)$

- Complete-infection Equilibrium (CIE)
- only happens when maternal transmission is perfect

$$CIE = (0, A_w^c, 0, F_w^c, 0, F_{pw}^c, 0, M_w^c)$$

$$(A_u, A_w, F_u, F_w, F_{pu}, F_{pw}, M_u, M_w)$$

- Disease-free Equilibrium (DFE)
- Wolbachia is not naturally found in the wild

 $DFE = (A_u^0, 0, F_u^0, 0, F_{pu}^0, 0, M_u^0, 0)$

- Complete-infection Equilibrium (CIE)
- only happens when maternal transmission is perfect

$$CIE = (0, A_w^c, 0, F_w^c, 0, F_{pw}^c, 0, M_w^c)$$

- Endemic Equilibrium (EE)
- infected and uninfected mosquitoes coexist in the population

$$EE = (A_u^*, A_w^*, F_u^*, F_w^*, F_{pu}^*, F_{pw}^*, M_u^*, M_w^*)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

In epidemiology, the basic reproductive number \mathbb{R}_0 of an infection

• is the number of cases one infected individual generates within its infectious period, in a totally susceptible population

▲□ ▲ □ ▲ □ ▲ □ ▲ □ ■ □

In epidemiology, the basic reproductive number \mathbb{R}_0 of an infection

- is the number of cases one infected individual generates within its infectious period, in a totally susceptible population
- threshold condition for the disease transmission
 - $\mathbb{R}_0>1$ the infection spreads out in a population
 - $\mathbb{R}_0 < 1$ the infection dies out

In epidemiology, the basic reproductive number \mathbb{R}_0 of an infection

- is the number of cases one infected individual generates within its infectious period, in a totally susceptible population
- threshold condition for the disease transmission
 - $\mathbb{R}_0>1$ the infection spreads out in a population
 - $\mathbb{R}_0 < 1$ the infection dies out
- measures the ability of the infectious disease to invade a population: $\mathbb{R}_0 \nearrow$, difficulty to control \nearrow
 - Measles (airborne): $\mathbb{R}_0 = 12 \sim 18$
 - HIV/AIDS (sexual contact): $\mathbb{R}_0 = 2 \sim 5$
 - Influenza (airborne droplet): $\mathbb{R}_0\approx 1.4$

In epidemiology, the basic reproductive number \mathbb{R}_0 of an infection

- is the number of cases one infected individual generates within its infectious period, in a totally susceptible population
- threshold condition for the disease transmission
 - $\mathbb{R}_0>1$ the infection spreads out in a population
 - $\mathbb{R}_0 < 1$ the infection dies out
- measures the ability of the infectious disease to invade a population: $\mathbb{R}_0 \nearrow$, difficulty to control \nearrow
 - Measles (airborne): $\mathbb{R}_0 = 12 \sim 18$
 - HIV/AIDS (sexual contact): $\mathbb{R}_0 = 2 \sim 5$
 - Influenza (airborne droplet): $\mathbb{R}_0 \approx 1.4$

For Wolbachia infection in mosquito population,

$$\mathbb{R}_0 = ?$$

next generation matrix [Diekmann (1990), van den Driessche (2002)]

next generation matrix [Diekmann (1990), van den Driessche (2002)]

$$\begin{split} \mathbf{X} &- \text{vector of all the infected groups} \\ \mathbf{X}'(t) &= \mathcal{F} - \mathcal{V} = \text{rate of new infection} - \text{rate of transition} \\ J_{\mathcal{F}} &= \frac{\partial \mathcal{F}}{\partial \mathbf{X}} \Big|_{DFE}, \ \ J_{\mathcal{V}} := \frac{\partial \mathcal{V}}{\partial \mathbf{X}} \Big|_{DFE}, \ \ \mathbb{R}_0 := \text{Spectral Radius of } (J_{\mathcal{F}} J_{\mathcal{V}}^{-1}) \end{split}$$

next generation matrix [Diekmann (1990), van den Driessche (2002)]

$$\begin{split} \mathbf{X} &- \text{vector of all the infected groups} \\ \mathbf{X}'(t) &= \mathcal{F} - \mathcal{V} = \text{rate of new infection} - \text{rate of transition} \\ J_{\mathcal{F}} &= \frac{\partial \mathcal{F}}{\partial \mathbf{X}} \Big|_{DFE}, \quad J_{\mathcal{V}} := \frac{\partial \mathcal{V}}{\partial \mathbf{X}} \Big|_{DFE}, \quad \mathbb{R}_0 := \text{Spectral Radius of } (J_{\mathcal{F}} J_{\mathcal{V}}^{-1}) \end{split}$$

After some messy calculations ...

next generation matrix [Diekmann (1990), van den Driessche (2002)]

$$\begin{split} \mathbf{X} &- \text{vector of all the infected groups} \\ \mathbf{X}'(t) &= \mathcal{F} - \mathcal{V} = \text{rate of new infection} - \text{rate of transition} \\ J_{\mathcal{F}} &= \frac{\partial \mathcal{F}}{\partial \mathbf{X}} \Big|_{DFE}, \quad J_{\mathcal{V}} := \frac{\partial \mathcal{V}}{\partial \mathbf{X}} \Big|_{DFE}, \quad \mathbb{R}_0 := \text{Spectral Radius of } (J_{\mathcal{F}} J_{\mathcal{V}}^{-1}) \end{split}$$

After some messy calculations ...

$$\mathbb{R}_{0} = v_{w} \frac{\mu_{fu} \phi_{w} (\sigma + \mu_{fu})}{\mu_{fw} \phi_{u} (\sigma + \mu_{fw})}$$

Vw	maternal transmission rate
μ_{fu}	death rates for F_u , F_{pu}
μ_{fw}	death rates for F_w , F_{pw}
ϕ_{u}	egg-laying rate for F _{pu}
ϕ_{w}	egg-laying rate for F _{pw}
σ	mating rate

~

Next generation numbers for infected and uninfected population

• \mathbb{G}_{0u} (next generation number for the uninfected population): the number of uninfected eggs that one uninfected egg can generate

$$A_u \rightarrow F_u \rightarrow F_{pu} \rightleftharpoons A_u$$

develops mates produces

(日) (周) (王) (王) (王)

Next generation numbers for infected and uninfected population

• \mathbb{G}_{0u} (next generation number for the uninfected population): the number of uninfected eggs that one uninfected egg can generate

$$A_u \to F_u \to F_{pu} \rightleftharpoons A_u$$

$$develops \quad mates \quad produces$$

$$\mathbb{G}_{0u} = \ b_f \frac{\psi}{\mu_a + \psi} \quad \frac{\sigma}{\sigma + \mu_{fu}} \quad \frac{\phi_u}{\mu_{fu}}$$

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Next generation numbers for infected and uninfected population

• \mathbb{G}_{0u} (next generation number for the uninfected population): the number of uninfected eggs that one uninfected egg can generate

$$A_u \to F_u \to F_{pu} \rightleftharpoons A_u$$
develops mates produces
$$G_{0u} = b_f \frac{\psi}{\mu_a + \psi} \frac{\sigma}{\sigma + \mu_{fu}} \frac{\phi_u}{\mu_{fu}}$$

 G_{0w} (next generation number for the infected population): the number of infected eggs that one infected egg can generate

$$A_w \to F_w \to F_{pw} \rightleftharpoons A_u$$
develops mates produces
$$\mathbb{G}_{0w} = v_w b_f \frac{\psi}{\mu_a + \psi} \frac{\sigma}{\sigma + \mu_{fw}} \frac{\phi_w}{\mu_{fw}}$$

(

$$\begin{split} \mathbb{G}_{0u} &= b_f \frac{\psi}{\mu_a + \psi} \frac{\sigma}{\sigma + \mu_{fu}} \frac{\phi_u}{\mu_{fu}} \quad \text{(uninfected)} \\ \mathbb{G}_{0w} &= v_w b_f \frac{\psi}{\mu_a + \psi} \frac{\sigma}{\sigma + \mu_{fw}} \frac{\phi_w}{\mu_{fw}} \quad \text{(infected)} \end{split}$$

$$\mathbb{G}_{0u} = b_f \frac{\psi}{\mu_a + \psi} \frac{\sigma}{\sigma + \mu_{fu}} \frac{\phi_u}{\mu_{fu}} \quad \text{(uninfected)}$$
$$\mathbb{G}_{0w} = v_w b_f \frac{\psi}{\mu_a + \psi} \frac{\sigma}{\sigma + \mu_{fw}} \frac{\phi_w}{\mu_{fw}} \quad \text{(infected)}$$

$$\mathbb{R}_{0} = v_{w} \frac{\mu_{fu} \phi_{w} \left(\sigma + \mu_{fu}\right)}{\mu_{fw} \phi_{u} \left(\sigma + \mu_{fw}\right)}$$

$$\begin{split} \mathbb{G}_{0u} &= b_f \frac{\psi}{\mu_a + \psi} \frac{\sigma}{\sigma + \mu_{fu}} \frac{\phi_u}{\mu_{fu}} \quad (\text{uninfected}) \\ \mathbb{G}_{0w} &= v_w b_f \frac{\psi}{\mu_a + \psi} \frac{\sigma}{\sigma + \mu_{fw}} \frac{\phi_w}{\mu_{fw}} \quad (\text{infected}) \\ \mathbb{R}_0 &= v_w \frac{\mu_{fu} \phi_w (\sigma + \mu_{fu})}{\mu_{fw} \phi_u (\sigma + \mu_{fw})} \\ &= \underbrace{\left(v_w b_f \frac{\psi}{\mu_a + \psi} \frac{\sigma}{\sigma + \mu_{fw}} \frac{\phi_w}{\mu_{fw}} \right)}_{\mathbb{G}_{0w}} / \underbrace{\left(\underbrace{b_f \frac{\psi}{\mu_a + \psi} \frac{\sigma}{\sigma + \mu_{fu}} \frac{\phi_u}{\mu_{fu}} \right)}_{\mathbb{G}_{0u}} \end{split}$$

$$\begin{split} \mathbb{G}_{0u} &= b_f \frac{\psi}{\mu_a + \psi} \frac{\sigma}{\sigma + \mu_{fu}} \frac{\phi_u}{\mu_{fu}} \quad (\text{uninfected}) \\ \mathbb{G}_{0w} &= v_w b_f \frac{\psi}{\mu_a + \psi} \frac{\sigma}{\sigma + \mu_{fw}} \frac{\phi_w}{\mu_{fw}} \quad (\text{infected}) \\ \mathbb{R}_0 &= v_w \frac{\mu_{fu} \phi_w (\sigma + \mu_{fu})}{\mu_{fw} \phi_u (\sigma + \mu_{fw})} \\ &= \underbrace{\left(v_w b_f \frac{\psi}{\mu_a + \psi} \frac{\sigma}{\sigma + \mu_{fw}} \frac{\phi_w}{\mu_{fw}} \right)}_{\mathbb{G}_{0w}} / \underbrace{\left(b_f \frac{\psi}{\mu_a + \psi} \frac{\sigma}{\sigma + \mu_{fu}} \frac{\phi_u}{\mu_{fu}} \right)}_{\mathbb{G}_{0u}} \\ &= \frac{\# \text{ of new infected eggs}}{\# \text{ of new uninfected eggs}} \quad (\text{per egg within one life cycle}) \end{split}$$

(

(日) (周) (日) (日) (日) (日) (000)

 $\mathbb{R}_0 = \frac{\# \text{ of new infected eggs}}{\# \text{ of new uninfected eggs}}$

(per egg within one life cycle)

Our stability analysis on ODE system shows that \dots

- $\mathbb{R}_0 > 1$ ("new infected>new uninfected")
 - infection spreads \rightarrow system approaches to endemic state

 $\mathbb{R}_0 = \frac{\# \text{ of new infected eggs}}{\# \text{ of new uninfected eggs}}$

(per egg within one life cycle)

Our stability analysis on ODE system shows that \dots

- $\mathbb{R}_0 > 1$ ("new infected>new uninfected")
 - infection spreads ightarrow system approaches to endemic state
 - too good to be true (real world, $\mathbb{R}_0 < 1,$ baseline $\mathbb{R}_0 \approx 0.7.)$

 $\mathbb{R}_0 = \frac{\# \text{ of new infected eggs}}{\# \text{ of new uninfected eggs}}$

(per egg within one life cycle)

Our stability analysis on ODE system shows that \dots

- $\mathbb{R}_0 > 1$ ("new infected>new uninfected")
 - infection spreads ightarrow system approaches to endemic state
 - too good to be true (real world, $\mathbb{R}_0 < 1$, baseline $\mathbb{R}_0 \approx 0.7$.)
- $\mathbb{R}_0 < 1$ ("new infected<new uninfected")
 - infection dies out?

 $\mathbb{R}_0 = \frac{\# \text{ of new infected eggs}}{\# \text{ of new uninfected eggs}}$

(per egg within one life cycle)

Our stability analysis on ODE system shows that \dots

- $\mathbb{R}_0 > 1$ ("new infected>new uninfected")
 - infection spreads ightarrow system approaches to endemic state
 - too good to be true (real world, $\mathbb{R}_0 < 1$, baseline $\mathbb{R}_0 \approx 0.7$.)
- $\mathbb{R}_0 < 1$ ("new infected<new uninfected")
 - infection dies out? Not necessarily!

 $\mathbb{R}_0 = \frac{\# \text{ of new infected eggs}}{\# \text{ of new uninfected eggs}}$

(per egg within one life cycle)

Our stability analysis on ODE system shows that \dots

- $\mathbb{R}_0 > 1$ ("new infected>new uninfected")
 - infection spreads \rightarrow system approaches to endemic state
 - too good to be true (real world, $\mathbb{R}_0 < 1$, baseline $\mathbb{R}_0 \approx 0.7$.)
- $\mathbb{R}_0 < 1$ ("new infected<new uninfected")
 - infection dies out? Not necessarily!
 - \mathbb{R}_0 is only valid near the DFE with small prevalence

 $\mathbb{R}_0 = \frac{\# \text{ of new infected eggs}}{\# \text{ of new uninfected eggs}}$

(per egg within one life cycle)

Our stability analysis on ODE system shows that \dots

- $\mathbb{R}_0 > 1$ ("new infected>new uninfected")
 - infection spreads ightarrow system approaches to endemic state
 - too good to be true (real world, $\mathbb{R}_0 < 1,$ baseline $\mathbb{R}_0 \approx 0.7.)$
- $\mathbb{R}_0 < 1$ ("new infected<new uninfected")
 - infection dies out? Not necessarily!
 - \mathbb{R}_0 is only valid near the DFE with small prevalence
 - There is a critical threshold for *Wolbachia* endemic to be possible.

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ 三回 ののの

Three steady states for imperfect maternal transmission

Stability analysis on the system gives ...

When \mathbb{R}_0 is very small OR $\mathbb{R}_0 > 1$...

However, \mathbb{R}_0 for real world...

Critical threshold for having Wolbachia endemic

Outlines

- Maternal transmission Wolbachia model
- 3 Bifurcation and Stability Analysis
- Wolbachia-based Mitigation Strategies
 - 5 Future Work

A ∃ ► A ∃ ► ∃ | = \0 Q Q

Numerical verification of the threshold condition

Small release \Rightarrow infection dies out

Large release \Rightarrow infection persists

A ∃ ► A ∃ ► ∃ E

Numerical verification of the threshold condition

Small release \Rightarrow infection dies out

Large release \Rightarrow infection persists
Numerical verification of the threshold condition

Small release \Rightarrow infection dies out

Large release \Rightarrow infection persists

90% infection is achieved around day 261

left: 0.5X, right: 0.9X, threshold: \approx 0.73X, $X = F_{pu}^0$

A ∃ ► A ∃ ► ∃ E

• threshold condition \sim the fraction of infected mosquitoes First reduce the number of uninfected mosquitoes (pre-release mitigation) Then release *Wolbachia*-infected mosquitoes

伺 ト イヨト イヨト ヨヨ のくら

- threshold condition \sim the fraction of infected mosquitoes First reduce the number of uninfected mosquitoes (pre-release mitigation) Then release *Wolbachia*-infected mosquitoes
- $\Rightarrow\,$ reduces the minimal number of infected mosquitoes must be released to exceed the threshold

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ

- threshold condition \sim the fraction of infected mosquitoes First reduce the number of uninfected mosquitoes (pre-release mitigation) Then release *Wolbachia*-infected mosquitoes
- $\Rightarrow\,$ reduces the minimal number of infected mosquitoes must be released to exceed the threshold
 - pre-release mitigation approaches

- Residual spraying

Source: United States Agency for International Development (USAID)

- threshold condition \sim the fraction of infected mosquitoes **First** reduce the number of uninfected mosquitoes (pre-release mitigation) **Then** release *Wolbachia*-infected mosquitoes
- $\Rightarrow\,$ reduces the minimal number of infected mosquitoes must be released to exceed the threshold
 - pre-release mitigation approaches

- Residual spraying
- Larval control

Source: http://entoplp.okstate.edu/mosquito/control/

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回日 ののの

- threshold condition \sim the fraction of infected mosquitoes **First** reduce the number of uninfected mosquitoes (pre-release mitigation) **Then** release *Wolbachia*-infected mosquitoes
- $\Rightarrow\,$ reduces the minimal number of infected mosquitoes must be released to exceed the threshold
 - pre-release mitigation approaches

- Residual spraying
- Larval control
- Sticky ovitrap

Source: Dugassa, S., Lindh, J.M., Torr, S.J. et al. Malar J (2012) 11: 374.

- threshold condition \sim the fraction of infected mosquitoes First reduce the number of uninfected mosquitoes (pre-release mitigation) Then release *Wolbachia*-infected mosquitoes
- $\Rightarrow\,$ reduces the minimal number of infected mosquitoes must be released to exceed the threshold
 - pre-release mitigation approaches

- Residual spraying
- Larval control
- Sticky ovitrap
- Acoustic attraction

Source: http://www.abc.net.au/news/2016-01-07/ female-mosquito-wingbeats-trap-males/7073408

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- threshold condition \sim the fraction of infected mosquitoes First reduce the number of uninfected mosquitoes (pre-release mitigation) Then release *Wolbachia*-infected mosquitoes
- $\Rightarrow\,$ reduces the minimal number of infected mosquitoes must be released to exceed the threshold
 - pre-release mitigation approaches

Approach	Target	Effectiveness
Residual spraying	Adults & larvae	Adults 90%, larvae 40%
Sticky ovitrap	Pregnant females	Eggs 50%, larvae 50% Pregnant females 75%
Acoustic attraction	Males	Males 80%

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Address three integrated mitigation strategies:

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回日 ののの

Address three integrated mitigation strategies:

Q1: What is the best mix of infected mosquitoes to release? Infected males, nonpregnant females and/or pregnant females?

A B A B A B B B A A A

Address three integrated mitigation strategies:

- Q1: What is the best mix of infected mosquitoes to release? Infected males, nonpregnant females and/or pregnant females?
- Q2: Which pre-release strategies are the most effective?

A B A B A B B B A A A

Address three integrated mitigation strategies:

- Q1: What is the best mix of infected mosquitoes to release? Infected males, nonpregnant females and/or pregnant females?
- Q2: Which pre-release strategies are the most effective?
- Q3: Release all the infected mosquitoes at once, or repetitively release smaller batches?

> < = > < = > = = < < < >

• release only infected male mosquitoes

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回日 ののの

 release only infected male mosquitoes
 ≈ sterile insect technique, adulticide not self-sustained

3 × 4 3 ×

 release only infected male mosquitoes
 ≈ sterile insect technique, adulticide not self-sustained

- release only infected male mosquitoes
 ≈ sterile insect technique, adulticide not self-sustained
- release both males and females
- $M_w + F_{pw}$ (pregnant)
- $M_w + F_w$ (nonpregnant)

A = A = A = A = A = A

- release only infected male mosquitoes
 ≈ sterile insect technique, adulticide not self-sustained
- release both males and females
- $M_w + F_{pw}$ (pregnant)
- $M_w + F_w$ (nonpregnant)

Q+♂→Q♂ $+ \mathbf{O} \rightarrow \text{offspring}$ $\dot{\mathbf{Q}} + \mathbf{O} \rightarrow \mathbf{Q} \quad \mathbf{O} \quad (\%)$ $\mathbf{Q} + \mathbf{O} \rightarrow \mathbf{Q} \quad \mathbf{O} \quad (\%)$

Release Approach	$M_w + F_{pw}$	$M_w + F_w$	
No pre-release mitigation	261	279	days
Residual spraying (F_u, F_{pu}, M_u, A_u)	52	55	days
Larval control (A_u)	203	268	days
Sticky trap (F_{pu})	105	108	days
Acoustic attraction (M_u)	215	227	days

Time (days) to 90% infection in females.

Zhuolin Qu (Tulane)

- release only infected male mosquitoes
 ≈ sterile insect technique, adulticide not self-sustained
- release both males and females
- $M_w + F_{pw}$ (pregnant) better!
- $M_w + F_w$ (nonpregnant)

Q+♂→Qď $P + O \rightarrow \text{offspring}$ $\dot{\mathbf{Q}} + \mathbf{O} \rightarrow \mathbf{Q} \quad \mathbf{O} \quad (\%)$ $\mathbf{Q} + \mathbf{O} \rightarrow \mathbf{Q} \quad \mathbf{O} \quad (\%)$

Release Approach	$M_w + F_{pw}$	$M_w + F_w$	
No pre-release mitigation	261	279	days
Residual spraying (F_u, F_{pu}, M_u, A_u)	52	55	days
Larval control (A_u)	203	268	days
Sticky trap (F_{pu})	105	108	days
Acoustic attraction (M_u)	215	227	days

Time (days) to 90% infection in females.

Zhuolin Qu (Tulane)

- < 글 ▶ < 글 ▶ | 글| ⊒ | • ○ < ⊙

- ∢ 🗇 እ

Q2: Which pre-release strategies are the most effective?

Time (days) to 90% infection in females.

Release Approach	$M_w + F_{pw}$	
No pre-release mitigation	261	days
Residual spraying (F_u, F_{pu}, M_u, A_u)	52	days
Larval control (A_u)	203	days
Sticky trap (F_{pu})	105	days
Acoustic attraction (M_u)	215	days

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Q2: Which pre-release strategies are the most effective?

Time (days) to 90% infection in females.

Release Approach	$M_w + F_{pw}$	
No pre-release mitigation	261	days
Residual spraying (F_u, F_{pu}, M_u, A_u)	52	days
Larval control (A_u)	203	days
Sticky trap $(F_{\rho u})$	105	days
Acoustic attraction (M_u)	215	days

 $\Rightarrow \text{ residual spraying } > \text{ sticky trap } > \text{ larval control} \approx \text{ acoustic attraction} \\ (F_u, F_{pu}, M_u, A_u) \qquad (F_{pu}) \qquad (A_u) \qquad (M_u)$

- remove pregnant females before releasing is the most effective
- remove males does not help a lot
- remove aquatic stage alone without killing pregnant females is not effective

Zhuolin Qu (Tulane)

- one big release, X females and X males at once
- five smaller releases, 0.2X females and 0.2X males each

- one big release, X females and X males at once
- five smaller releases, 0.2X females and 0.2X males each

Time between releases:	Single	1 day	$3 \mathrm{~days}$	$7 \mathrm{~days}$	10 days	$15 \mathrm{~days}$
	Release	$_{\mathrm{gap}}$	$_{\mathrm{gap}}$	gap	$_{\mathrm{gap}}$	$_{\mathrm{gap}}$
No pre-release mitigation	261	248	229	221	223	234
Residual spraying (F_u, F_{pu}, M_u, A_u)	52	54	66	80	90	103

3 × + 3 × 3 = 1 = 000

- one big release, X females and X males at once
- five smaller releases, 0.2X females and 0.2X males each

Time between releases:	Single	1 day	$3 \mathrm{~days}$	$7 \mathrm{~days}$	$10 \mathrm{~days}$	$15 \mathrm{~days}$
	Release	$_{\mathrm{gap}}$	$_{\mathrm{gap}}$	$_{\mathrm{gap}}$	gap	$_{\mathrm{gap}}$
No pre-release mitigation	> 261	248	229	221	223	234
Residual spraying (F_u, F_{pu}, M_u, A_u)	52	54	66	80	90	103

- the optimal releasing strategy is different
- no pre-release mitigation: split releases
- residual spraying: one big release

- one big release, X females and X males at once
- five smaller releases, 0.2X females and 0.2X males each

Time between releases:	Single	1 day	$3 \mathrm{~days}$	$7 \mathrm{~days}$	$10 \mathrm{~days}$	$15 \mathrm{~days}$
	Release	$_{\mathrm{gap}}$	$_{\mathrm{gap}}$	$_{\mathrm{gap}}$	gap	$_{\mathrm{gap}}$
No pre-release mitigation	> 261	248	229	221	223	234
Residual spraying (F_u, F_{pu}, M_u, A_u)	52	54	66	80	90	103

- the optimal releasing strategy is different
- no pre-release mitigation: split releases
- residual spraying: one big release
- constraint from carrying capacity in the aquatic-stage
- efficient use of infected males to sterilized uninfected single females

A = A = A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A

Outlines

- Mosquito-borne diseases v.s. Wolbachia
- Maternal transmission Wolbachia model
- 3 Bifurcation and Stability Analysis
- Wolbachia-based Mitigation Strategies

5 Future Work

EL OQO

< 注入 < 注入

Future work

- may include seasonal variation (temperature, humidity)
- egg development rate, death rate, carrying capacity of the environment
- gives more practical guide when the releasing process spans more than one season
- may include spatial heterogeneity
- for real field releases, the infected population is released at several distant spots
- the infection diffuses out in a radial symmetric manner

Acknowledgment

- James (Mac) Hyman, Mathematics Department, Tulane
- Dawn Wesson, Panpim Thongsripong, Department of Tropical Medicine, Tulane
- Patricia Scaraffia, Department of Tropical Medicine, Tulane

This research was partially supported by

- NSF/MPS/DMS-NIH/NIGMS award
- NIH-NIGMS Models of Infectious Disease Agent Study (MIDAS) award

Thank you!

A B A B A B B B A A A

Future Work

Create a stable Wolbachia epidemic in wild moquito population

◆□▶ <舂▶ <≧▶ <≧▶ ≤≧▶ Ξ|= のQ@</p>

Baseline parameter values and ranges

	Description	Baseline	Range
b _f	Female birth probability	0.5	0.50 - 0.57
b_m	Male birth probability $= 1 - b_f$	0.5	0.43 - 0.50
σ	Per capita mating rate	1	-
ϕ_{u}	Per capita egg F_{pu} laying rate	13	12 – 18
ϕ_{w}	Per capita egg F_{pw} laying rate	11	8 – 12
Vw	Maternal transmission efficiency	0.95	0.89 - 1
ψ	Per capita development rate	1/8.75	1/9.2 - 1/8.1
μ_{a}	Death rate for A_u or A_w	0.02	0.01 - 0.04
$\mu_{\it fu}$	Death rate for F_u	1/17.5	1/21 - 1/14
$\mu_{\textit{fw}}$	Death rate for F_w	1/15.8	1/19 - 1/12.6
μ_{mu}	Death rate for M_u	1/10.5	1/14 - 1/7
μ_{mw}	Death rate for M_w	1/10.5	1/14 - 1/7
Ka	Carrying capacity of A_u or A_w	$2 imes 10^5$	-

Full table for Q3:

Is one big release better than split repetitive releases?

Time between releases:	Single	1 day	3 days	7 days	10 days	15 days
	Release	$_{\mathrm{gap}}$	$_{\mathrm{gap}}$	$_{\mathrm{gap}}$	$_{\mathrm{gap}}$	$_{\mathrm{gap}}$
No pre-release mitigation	> 261	248	229	221	223	234
Residual spraying (F_u, F_{pu}, M_u, A_u)		54	66	80	90	103
Larval control (A_u)	► 7 203	229	214	208	210	221
Sticky trap (F_{pu})	— 105	108	118	131	142	159
Acoustic attraction (M_u)	> 215	207	199	200	207	222

- constraint of carrying capacity in the aquatic-stage
- efficient use of male to sterilize uninfected single females
- sticky trap \approx spraying: create a big gap in the aquatic-stage, fill the gap ASAP
- acoustic attraction: get rid of redundant males \approx no mitigation
- larval control: big delay, b/c not fill in the gap in time \rightarrow no mitigation

Safety concerns of a Wolbachia-based strategy?

- it can be transferred to humans through the bites?
 - Wolbachia are naturally found in a large range of insect species
 - *Wolbachia* have never been found in humans or other mammals, e.g. birds, reptiles or fish
- it be transferred to other organisms?
 - Wolbachia is not infectious, only vertically transmitted
 - it can only live inside the hosts cells, don't survive outside the host
 - degrade together when mosquitoes die, and is indistinguishable from natural organic components, no toxicological significance

Popovici, Jean, et al. "Assessing key safety concerns of a *Wolbachia*-based strategy to control dengue transmission by Aedes mosquitoes." *Memorias do Instituto Oswaldo Cruz* 105.8 (2010): 957-964.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Safety concerns of a Wolbachia-based strategy?

- it can be transferred to humans through the bites?
 - Wolbachia are naturally found in a large range of insect species
 - *Wolbachia* have never been found in humans or other mammals, e.g. birds, reptiles or fish
- it be transferred to other organisms?
 - Wolbachia is not infectious, only vertically transmitted
 - it can only live inside the hosts cells, don't survive outside the host
 - degrade together when mosquitoes die, and is indistinguishable from natural organic components, no toxicological significance
- potential consequences over a long-term period and large geographic scale?
- evolution of the virus in response to the presence of Wolbachia?

Popovici, Jean, et al. "Assessing key safety concerns of a *Wolbachia*-based strategy to control dengue transmission by Aedes mosquitoes." *Memorias do Instituto Oswaldo Cruz* 105.8 (2010): 957-964.