Network modeling the impact of community-based male-screeing on the Chlamydia prevalence in women

Zhuolin Qu1,*

Mathematics Department
Tulane University

Asma Azizi2 Norine Schmidt3 Megan Craig-Kuhn3 Charles Stoecker4
James (Mac) Hyman1 Patricia Kissinger3

1 Mathematics Department, Tulane University
2 Simon A. Levin Mathematical Computational Modeling Science Center, Arizona State University
3 Department of Epidemiology, Tulane University
4 Department of Global Health Management and Policy, Tulane University

This work was supported by National Institutes of Health NICHD, OAH, and NIGMS/MIDAS.
Outlines

1. Introduction of Chlamydia disease
2. Mathematical modeling of Chlamydia
3. Study the impact of male-screening intervention
Chlamydia - most commonly reported sexually transmitted disease (STD)

- Chlamydia is an infection with *Chlamydia trachomatis* bacteria.
- Ct is the most commonly reported STD in the U.S.
 - 1.7 million cases, CDC 2017 Surveillance
 - 2.9 million cases, estimated, under-reporting
 - 22% increase since 2013

Cases per 100,000 population (2017) both sexes, all races/ethnicities

Chlamydia - LA, 742
 - black/AA, 1595
 - age 15-24, 7153
 - female, 10323
 (~1/10)
Chlamydia - most commonly reported sexually transmitted disease (STD)

- Chlamydia is an infection with *Chlamydia trachomatis* bacteria.
- Ct is the most commonly reported STD in the U.S.
 - 1.7 million cases, CDC 2017 Surveillance
 - 2.9 million cases, estimated, under-reporting
 - 22% increase since 2013

Cases per 100,000 population (2017)
both sexes, all races/ethnicities

Chlamydia - LA, 742
- black/AA, 1595
 - age 15-24, 7153
 - female, 10323 (~1/10)
“Silent” infection leads to serious consequences in women

- symptomatic infection in only 10% of men and 30% women

Untreated Chlamydia can cause serious, permanent damage to a woman's reproductive system:
- infertility
- pelvic inflammatory disease
- ectopic pregnancy
- pre-term delivery
- eye inflammation/pneumonia in the newborn

Increased HIV risk

Chlamydia treatment:

Chlamydia can be easily cured with antibiotics.

Repeat infection with chlamydia is common.

Screening is necessary to identify most infections.
“Silent” infection leads to serious consequences in women

- symptomatic infection in only 10% of men and 30% women

Untreated Chlamydia

- cause serious, permanent damage to a woman’s reproductive system
 - infertility, pelvic inflammatory disease
 - ectopic pregnancy
 - pre-term delivery, eye inflammation/pneumonia in the newborn

Chlamydia treatment
Chlamydia can be easily cured with antibiotics

Repeat infection with chlamydia is common
Screening is necessary to identify most infections.
“Silent” infection leads to serious consequences in women

- symptomatic infection in only 10% of men and 30% women

Untreated Chlamydia

- cause serious, permanent damage to a woman's reproductive system
 - infertility, pelvic inflammatory disease
 - ectopic pregnancy
 - pre-term delivery, eye inflammation/pneumonia in the newborn

- increased HIV risk
“Silent” infection leads to serious consequences in women

- symptomatic infection in only 10% of men and 30% women

Untreated Chlamydia

- cause serious, permanent damage to a woman’s reproductive system
 - infertility, pelvic inflammatory disease
 - ectopic pregnancy
 - pre-term delivery, eye inflammation/pneumonia in the newborn

- increased HIV risk

Chlamydia treatment

- Chlamydia can be easily cured with antibiotics
- Repeat infection with chlamydia is common
“Silent” infection leads to serious consequences in women

- symptomatic infection in only 10% of men and 30% women

Untreated Chlamydia

- cause serious, permanent damage to a woman's reproductive system
 - infertility, pelvic inflammatory disease
 - ectopic pregnancy
 - pre-term delivery, eye inflammation/pneumonia in the newborn
- increased HIV risk

Chlamydia treatment

- Chlamydia can be easily cured with antibiotics
- Repeat infection with chlamydia is common

Screening is necessary to identify most infections.
Introduction of Chlamydia disease

CDC: routine screening policy for women, but not for men

Annual screening is recommended for high-risk women

- sexually active women <25 years old
- older women with risk factors (new or multiple partners)
CDC: routine screening policy for women, but not for men

Annual screening is recommended for high-risk women

- sexually active women <25 years old
- older women with risk factors (new or multiple partners)

CDC: Routine screening is not recommended for men.
CDC: routine screening policy for women, but not for men

Annual screening is recommended for high-risk women
- sexually active women <25 years old
- older women with risk factors (new or multiple partners)

CDC: Routine screening is not recommended for men.

Question: will screening men reduce rates in women?
- Men could be an important reservoir of infection for women
Introduction of Chlamydia disease

CDC: routine screening policy for women, but not for men

Annual screening is recommended for high-risk women
 - sexually active women <25 years old
 - older women with risk factors (new or multiple partners)

CDC: Routine screening is not recommended for men.

Question: will screening men reduce rates in women?
 - Men could be an important reservoir of infection for women

“Check It”, a male-screening based program, targets
 - African American men
 - age 15-24, live in New Orleans
 - sexually active (at least one sexual contact in the past two months)
Goal: model and quantify the impacts of male-screening strategy
Goal: model and quantify the impacts of male-screening strategy

We create a mathematical model for Chlamydia epidemic:

- stochastic, heterosexual, individual-based
- simulates Chlamydia transmission over sexual networks
- describes the interventions for the epidemic
Outlines

1. Introduction of Chlamydia disease

2. Mathematical modeling of Chlamydia

3. Study the impact of male-screening intervention
Network modeling to describe heterosexual partnership
Network modeling to describe heterosexual partnership

- heterosexual network, node = person, edge = sexual partnership
Network modeling to describe heterosexual partnership

- heterosexual network, node = person, edge = sexual partnership
- dynamic sexual networks, partner changes in time
Network modeling to describe heterosexual partnership

- heterosexual network, node = person, edge = sexual partnership
- dynamic sexual networks, partner changes in time
Network modeling to describe heterosexual partnership

- heterosexual network, node = person, edge = sexual partnership
- dynamic sexual networks, partner changes in time
Network modeling to describe heterosexual partnership

- heterosexual network, node = person, edge = sexual partnership
- dynamic sexual networks, partner changes in time
Network modeling to describe heterosexual partnership

- heterosexual network, node = person, edge = sexual partnership
- dynamic sexual networks, partner changes in time
- primary (long-term) vs. casual (short-term)
Realistic sexual networks need biased mixing
Realistic sexual networks need biased mixing

1. social mixing: social network gives biased mixing from age, spatial location, social status, etc
Realistic sexual networks need biased mixing

- social mixing: social network gives biased mixing from age, spatial location, social status, etc

- TRANSIMS infrastructure, tracks social activities, 150K population, New Orleans (Bryan Lewis, Achla Marathe, U Virginia)
Realistic sexual networks need biased mixing

- social mixing: social network gives biased mixing from age, spatial location, social status, etc
Realistic sexual networks need biased mixing

1. social mixing: social network gives biased mixing from age, spatial location, social status, etc
2. sexual mixing: how many partners? primary or casual?
Realistic sexual networks need biased mixing

1. social mixing: social network gives biased mixing from age, spatial location, social status, etc

2. sexual mixing: how many partners? primary or casual?
 - data from “Check It” and “You Geaux Girl!”
Realistic sexual networks need biased mixing

1. social mixing: social network gives biased mixing from age, spatial location, social status, etc
2. sexual mixing: how many partners? primary or casual?

Check It, men’s perspective

- enrolled 1318 AA men
 (ongoing, as of April 2019)
- survey questionnaire on
 - sexual behavior
 - partner demographics

https://gocheckit.net/
Realistic sexual networks need biased mixing

1. social mixing: social network gives biased mixing from age, spatial location, social status, etc

2. sexual mixing: how many partners? primary or casual?

You Geaux Girl!, women’s perspective (Jakevia L. Green, 2014, Tulane)
- enrolled 649 AA women
- survey questionnaire on
 - sexual behavior
 - partner information

Pregnancy prevention intervention for young AA women
Realistic sexual networks need biased mixing

1. social mixing: social network gives biased mixing from age, spatial location, social status, etc

2. sexual mixing: how many partners? primary or casual?

- social network
- sexual behavior survey

dynamic sexual networks
Realistic sexual networks need biased mixing

1. Social mixing: social network gives biased mixing from age, spatial location, social status, etc.
2. Sexual mixing: how many partners? Primary or casual?

\[\sim 80\% \text{ of partnerships from one’s heterosexual social network} \]
Realistic sexual networks need biased mixing (population = 5000)
Realistic sexual networks need biased mixing (population = 5000)
Chlamydia transmission on sexual network - SIS model

Susceptible (S) \rightarrow \text{force of infection} \rightarrow \text{Infected (I)}

\text{treated or natural recovery}

- force of infection combining risk factors
 - number of partners
 - probability of having a sexual contact
 - probability of using a condom
 - type of partnership (primary or casual)

\text{I} \rightarrow \text{S}: \text{Chlamydia infection does not confer lasting immunity after treatment or natural clearance; individual may have repeat infections once susceptible}
Chlamydia transmission on sexual network - SIS model

- **S → I**: force of infection combining risk factors
 - number of partners
 - probability of having a sexual contact
 - probability of using a condom
 - type of partnership (primary or casual)

- **I → S**: Chlamydia infection does not confer lasting immunity after treatment or natural clearance; an individual may have repeat infections once susceptible
Chlamydia transmission on sexual network - SIS model

- $S \rightarrow I$: force of infection combining risk factors
 - number of partners
 - probability of having a sexual contact
 - probability of using a condom
 - type of partnership (primary or casual)

- $I \rightarrow S$: Chlamydia infection does not confer lasting immunity after treatment or natural clearance

- individual may have repeat infections once susceptible
Mathematical modeling of Chlamydia Disease dynamics on network

Zhuolin Qu (Tulane)
Investigate the effectiveness of male-screening strategy

We need to have a comprehensive description for

- the existing intervention approaches
- Check It male-screening intervention program

to study the *net* impact of male-screening strategy given the existing policy
Investigate the effectiveness of male-screening strategy

We need to have a comprehensive description for

- the existing intervention approaches → baseline scenario
- Check It male-screening intervention program

to study the net impact of male-screening strategy given the existing policy
Baseline intervention strategies

- **women annual screening**
 as regular preventive healthcare
Baseline intervention strategies

- **women annual screening** as regular preventive healthcare
- **index treatment** by antibiotic
Baseline intervention strategies

- **women annual screening** as regular preventive healthcare
- **index treatment** by antibiotic
- **expedited partner treatment** (EPT) partner treated w/o diagnostic

[Diagram of intervention strategies]

- Annual Exam (women only)
 - Screening
 - Index Treatment
 - Partner Treatment
Baseline intervention strategies

- **women annual screening** as regular preventive healthcare
- **index treatment** by antibiotic
- **expedited partner treatment** (EPT) partner treated w/o diagnostic
- **rescreening** three months after initial infection
Baseline intervention strategies

- **women annual screening** as regular preventive healthcare
 - **index treatment** by antibiotic
 - **expedited partner treatment (EPT)** partner treated w/o diagnostic
 - **rescreening** three months after initial infection

- **women clinic visit** for symptomatic infection
 - about 30% cases in women
 - same procedure if infected
Baseline intervention strategies

- **women annual screening** as regular preventive healthcare
 - **index treatment** by antibiotic
 - **expedited partner treatment (EPT)** partner treated w/o diagnostic
 - **rescreening** three months after initial infection

- **women clinic visit** for symptomatic infection
 - about 30% cases in women
 - same procedure if infected

Zhuolin Qu (Tulane)
Baseline intervention strategies

- **women annual screening**
- **women clinic visit**
- **men clinic visit** for symptomatic infection
 - about $\sim 10\%$ cases in men
 - index treatment
Baseline intervention strategies

- **women annual screening**
- **women clinic visit**
- **men clinic visit**

Check It male-screening
Baseline intervention strategies

- **women annual screening**
- **women clinic visit**
- **men clinic visit**

Check It male-screening

- **venue-based enrollment**
 - high-prevalence neighborhoods
 - barbershops, community colleges, universities
Baseline intervention strategies

- **women annual screening**
- **women clinic visit**
- **men clinic visit**

Check It male-screening

- **venue-based enrollment**
- **expedited index treatment**
Baseline intervention strategies

- **women annual screening**
- **women clinic visit**
- **men clinic visit**

Check It male-screening

- **venue-based enrollment**
- **expedited index treatment**
- **expedited partner treatment**
 - partnering community pharmacies w/o diagnostic
- **rescreening**
Baseline intervention strategies

- women annual screening
- women clinic visit
- men clinic visit

Check It male-screening

- venue-based enrollment
- expedited index treatment
- expedited partner treatment
- rescreening
- social network peer referral
 - refer friends in social network
 - referral coupon, monetary incentive
 - word-of-month, peer effect, etc
Mathematical modeling of Chlamydia

Modeling the intervention strategies

Zhuolin Qu (Tulane)
Outlines

1. Introduction of Chlamydia disease
2. Mathematical modeling of Chlamydia
3. Study the impact of male-screening intervention
Check It intervention at current intensity

Current intervention intensity of Check It

- venue-based enrollment 7.5% per year
 - peer-recruited: about every three men bring one more friend
- index treatment rate 76%, delay = 12 days
- partner treatment rate 27%, delay = 2 days
- rescreening 8%, delay = 102 days
Study the impact of male-screening intervention

Check It intervention at current intensity

![Graph showing the prevalence of Chlamydia infection over the years for women (in pink) and men (in green).](image)

- **y-axis**: Prevalence of Ct infection (in percentage)
- **x-axis**: Year (from -3 to 12 years)

- **Legend**:
 - Pink line: women
 - Green line: men
Study the impact of male-screening intervention

Check It intervention at current intensity

![Graph showing the prevalence of Chlamydia infection over time, with lines for women and men, indicating a decrease after the implementation of Check It intervention.]
Check It intervention at current intensity

achieve a quasi-steady state around year 5

Baseline (before Check It) → after Check It
Study the impact of male-screening intervention

Check It intervention at current intensity

![Graph showing the prevalence of Chlamydia infection over time, with a quasi-steady state around year 5.](image)

- **Women**: 13.5%, 12.4%
- **Men**: 10.2%, 9.3%

Baseline (before Check It) vs. after Check It
Check It intervention at current intensity

Achieve a quasi-steady state around year 5

8.1% ↓ in women
8.8% ↓ in men

Baseline (before Check It) — after Check It
Male-screening intervention help to reduce Chlamydia prevalence in women
Study the impact of male-screening intervention

Male-screening intervention help to reduce Chlamydia prevalence in women
Male-screening intervention help to reduce Chlamydia prevalence in women

(current Check It intervention level vs. Baseline)

Study the impact of male-screening intervention
Male-screening intervention help to reduce Chlamydia prevalence in women

30% reduction in prevalence for women

Current Check It intervention level

Baseline
Male-screening intervention help to reduce Chlamydia prevalence in women

- 30% reduction in prevalence for women
- Current Check It intervention level
- Baseline
- VBS = 30%
- EPT = 40%

Study the impact of male-screening intervention.
Male-screening intervention help to reduce Chlamydia prevalence in women

30% reduction in prevalence for women

VBS = 23%
EPT = 70%

current Check It intervention level

Baseline
Conclusion

- We proposed a stochastic, heterosexual and individual-based model that describes
 - the Chlamydia epidemic over sexual networks, and
 - the ongoing intervention strategies to control the prevalences.
- Our model
 - provides a mathematical framework to quantify how effective different combinations of interventions will be in mitigating Chlamydia, and
 - predicts that venue-based screening of young African American men has the potential to affect women's rates
Acknowledgment

- This work was supported by grants from National Institutes of Health NICHD, OAH, and NIGMS/MIDAS.