Modeling immunity to malaria with an age-structured PDE Framework

Zhuolin Qu

Department of Mathematics University of Texas at San Antonio

Denis Patterson¹ Lauren Childs² Christina Edholm³ Joan Ponce⁴ Olivia Prosper⁵ Lihong Zhao⁶

¹ Princeton University ² Virginia Tech ³ Scripps College ⁴ University of California, Los Angeles
 ⁵ University of Tennessee, Knoxville ⁶ University of California Merced

This research is based upon work supported by the National Science Foundation under Grant Number DMS 1641020, and the UTSA New Faculty Startup Funds.

Outlines

Introduction of malaria

2 Mathematical modeling of malaria with immunity

3) Basic reproduction number \mathcal{R}_0

4 Numerical examples

Zhuolin Qu (UTSA)

イロト イボト イヨト イヨト

- Severe public health problems worldwide for a long time
- about 229 million cases and 409K people died worldwide (2019)
- poverty, economic development
- children (age < 5) give 2/3 of fatalities, African region

Source: Our World in Data, Data: Institute for Health Metrics and Evaluation (IHME), 2018. 🗇 🖂 🗄 🛌 🗧 🖉 🔍 🔍

• mosquito-borne disease

vector: *Anopheles* mosquitoes (exclusively) parasites: *Plasmodium falciparum* (Africa, deadliest)

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

mosquito-borne disease

vector: *Anopheles* mosquitoes (exclusively) parasites: *Plasmodium falciparum* (Africa, deadliest)

malaria controls

insecticide-treated nets, indoor residual spraying antimalarial drug (drug resistance), Intermittent preventive therapy vaccine (RTS,S)

Source: MalariaWorld, USAID, WHO

Zhuolin Qu (UTSA)

< □ > < 同 > < 回 > < 回 > < 回 >

mosquito-borne disease

vector: *Anopheles* mosquitoes (exclusively) parasites: *Plasmodium falciparum* (Africa, deadliest)

malaria controls

insecticide-treated nets, indoor residual spraying antimalarial drug (drug resistance), Intermittent preventive therapy vaccine (RTS,S)

Better understand the disease dynamics - heterogeneity!

Source: MalariaWorld, USAID, WHO

Zhuolin Qu (UTSA)

< □ > < 同 > < 回 > < 回 > < 回 >

Heterogeneity in malaria infection

Natural immunity to malaria can be acquired through repeated exposure.

- Age-related prevalence and immune profiles
- Vary with environment different transmission level
- Low transmission region: flat profile
- High transmission region: peak in young children
- Seasonality (temperature, humidity), elevation

Filipe J et al, 2007, PLOS Computational Biology 3(12): e255, https://doi.org/10.1371/journal.pcbi.0030255 💿 🐑 🔍

Zhuolin Qu (UTSA)

Heterogeneity in malaria infection

Develop model to capture the heterogeneity in

- Age-related prevalence and immune profiles
- Vary with environment different transmission level
- Low transmission region: flat profile
- High transmission region: peak in young children
- Seasonality (temperature, humidity), elevation

Filipe J et al, 2007, PLOS Computational Biology 3(12): e255, https://doi.org/10.1371/journal.pcbi.0030255 💿 🕤 🗠

Zhuolin Qu (UTSA)

Malaria PDE with immunity

3/25

Outlines

Introduction of malaria

2 Mathematical modeling of malaria with immunity

3 Basic reproduction number \mathcal{R}_0

4 Numerical examples

э

イロト イボト イヨト イヨト

Human-mosquito transmission model

A B b A B b

Human-mosquito transmission model

・ 何 ト ・ ヨ ト ・ ヨ ト

Human-mosquito transmission model

- What to track?
- anti-disease immunity: clinical symptoms, e.g. $E_H \rightarrow D_H$?
- anti-parasite immunity: parasite clearance, e.g. recovery rates r_A, r_D

< □ > < □ > < □ > < □ > < □ > < □ >

- What to track?
- anti-disease immunity: clinical symptoms, e.g. $E_H \rightarrow D_H$?
- anti-parasite immunity: parasite clearance, e.g. recovery rates r_A , r_D

< □ > < □ > < □ > < □ > < □ > < □ >

- What to track?
- anti-disease immunity: clinical symptoms, e.g. $E_H \rightarrow D_H$?

 ρ : *Prob* ($E_H \rightarrow D_H$) exposure \rightarrow severe disease

- ψ : Prob ($A_H \rightarrow D_H$) "superinfection" \rightarrow severe disease
- ϕ : *Prob* $(D_H \rightarrow S_H)$ severe disease \rightarrow fully recover

- What to track?
- anti-disease immunity: clinical symptoms, e.g. $E_H \rightarrow D_H$?
- three different sources

< □ > < □ > < □ > < □ > < □ > < □ >

- What to track?
- anti-disease immunity: clinical symptoms, e.g. $E_H \rightarrow D_H$?
- three different sources
 - C_{ν} immunity boosting vaccine (blood-stage vaccine)
 - V_H infection protection vaccine (RTS,S)

< □ > < □ > < □ > < □ > < □ > < □ >

Tracking the population immunity - different sources

$$\begin{aligned} & \underbrace{C_{e}(\alpha, t)}_{immunity acquised immunity for people age}_{immunity acquision (exposure)} age = \alpha \\ & \underbrace{\frac{\partial C_{e}}{\partial t} + \frac{\partial C_{e}}{\partial \alpha}}_{immunity acquision (exposure)} = \underbrace{f(\Lambda_{H}) \left(c_{S}S_{H} + c_{E}E_{H} + c_{A}A_{H} + c_{D}D_{H}\right)}_{expansion} \\ & \underbrace{C_{e}(0, t) = 0}_{f(\Lambda_{H}) = \frac{\Lambda_{H}}{\gamma\Lambda_{H} + 1}, \quad \gamma \ge 0 \quad \begin{array}{c} \text{Saturation} \\ \text{function} \end{array} \quad \begin{array}{c} \underbrace{C_{e}}_{de} - \underbrace{\mu_{H}(\alpha)C_{e} - \mu_{D}(\alpha)\frac{D_{H}}{P_{H}}C_{e}}_{(natural)} \\ & (disease) \end{array} \end{aligned}$$

 $P_H(\alpha, t) = S_H + E_H + A_H + D_H + V_H$

Tracking the population immunity - different sources

$$\begin{aligned} C_{e}(\alpha, t): & \text{exposure-acquired immunity for people age} = \alpha \\ & \underset{\text{immunity acquision (exposure)}}{\frac{\partial C_{e}}{\partial t} + \frac{\partial C_{e}}{\partial \alpha}} = \boxed{f(\Lambda_{H}) (c_{S}S_{H} + c_{E}E_{H} + c_{A}A_{H} + c_{D}D_{H})} \\ & \underset{\text{waning}}{\text{waning}} \qquad \text{loss from death} \\ C_{e}(0, t) = 0 \\ & f(\Lambda_{H}) = \frac{\Lambda_{H}}{\gamma\Lambda_{H} + 1}, \quad \gamma \ge 0 \quad \underset{\text{function}}{\text{Saturation}} \qquad - \frac{C_{e}}{d_{e}} - \underbrace{\mu_{H}(\alpha)C_{e} - \mu_{D}(\alpha)\frac{D_{H}}{P_{H}}C_{e}}_{\text{(natural)} \text{ (disease)}} \\ P_{H}(\alpha, t) = S_{H} + E_{H} + A_{H} + D_{H} + V_{H} \end{aligned}$$

$$C_{m}(\alpha, t): \text{ maternal-derived immunity for people age} = \alpha \\ \frac{\partial C_{m}}{\partial t} + \frac{\partial C_{m}}{\partial \alpha} = - \underbrace{C_{m}}_{d_{m}} - \underbrace{\mu_{H}(\alpha)C_{m} - \mu_{D}(\alpha)\frac{D_{H}}{P_{H}}C_{m}}_{\text{(natural)} \text{ (disease)}} \\ C_{m}(0, t) = m_{0} \int_{0}^{\infty} \underbrace{\underset{g_{H}(\alpha)}{\text{birth}} (c_{1}C_{e}(\alpha, t) + c_{3}C_{\nu}(\alpha, t)) d\alpha \end{aligned}$$

Tracking the population immunity - different sources

 $C_{\nu}(\alpha, t)$: vaccine-derived immunity for people age = α

•
$$C_H = c_1 C_e + c_2 C_m + c_3 C_{\nu}$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Connecting immunity to transmission

- Immunity dynamics create feedback on infection dynamics: linking functions
- $\rho(C_H/P_H), \psi(C_H/P_H), \phi(C_H/P_H)$

• • = • • = •

$$\partial_{t}S_{H} + \partial_{\alpha}S_{H} = \phi(\widetilde{C}_{H})r_{D}D_{H} + r_{A}A_{H} - \Lambda_{H}(t)S_{H} \\ -\eta(\alpha)\nu_{p}(\alpha,t)S_{H} + wV_{H} - \mu_{H}(\alpha)S_{H}, \\ \partial_{t}E_{H} + \partial_{\alpha}E_{H} = \Lambda_{H}(t)S_{H} - hE_{H} - \mu_{H}(\alpha)E_{H}, \\ \partial_{t}A_{H} + \partial_{\alpha}A_{H} = (1 - \rho(\widetilde{C}_{H}))hE_{H} - \psi(\widetilde{C}_{H})\Lambda_{H}(t)A_{H} \\ + (1 - \phi(\widetilde{C}_{H}))r_{D}D_{H} - r_{A}A_{H} - \mu_{H}(\alpha)A_{H}, \\ \partial_{t}D_{H} + \partial_{\alpha}D_{H} = \rho(\widetilde{C}_{H})hE_{H} + \psi(\widetilde{C}_{H})\Lambda_{H}(t)A_{H} \\ - r_{D}D_{H} - (\mu_{H}(\alpha) + \mu_{D}(\alpha))D_{H}, \\ \partial_{t}V_{H} + \partial_{\alpha}V_{H} = \eta(\alpha)\nu_{p}(\alpha,t)S_{H} - wV_{H} - \mu_{H}(\alpha)V_{H}, \\ \frac{dS_{M}}{dt} = -\Lambda_{M}(t)S_{M} - \sigma E_{M} - \mu_{M}E_{M} \\ \frac{dI_{M}}{dt} = \sigma E_{M} - \mu_{M}I_{M} \\ \partial_{t}C_{e} + \partial_{\alpha}C_{e} = f(\Lambda_{H})(c_{S}S_{H} + c_{E}E_{H} + c_{A}A_{H} + c_{D}D_{H}) \\ - \left(\frac{1}{d_{e}} + \mu_{H}(\alpha) + \mu_{D}(\alpha)\frac{D_{H}}{P_{H}}\right)C_{e}, \\ \partial_{t}C_{w} + \partial_{\alpha}C_{w} = -\left(\frac{1}{d_{m}} + \mu_{H}(\alpha) + \mu_{D}(\alpha)\frac{D_{H}}{P_{H}}\right)C_{w}, \\ \partial_{t}C_{w} + \partial_{\alpha}C_{w} = c_{w}\nu_{b}(\alpha,t)S_{H} - \left(\frac{1}{d_{v}} + \mu_{H}(\alpha) + \mu_{D}(\alpha)\frac{D_{H}}{P_{H}}\right)C_{v}, \\ \end{array}$$

Zhuolin Qu (UTSA)

Outlines

Mathematical modeling of malaria with immunity

```
3 Basic reproduction number \mathcal{R}_0
```

Numerical examples

э

イロト イポト イヨト イヨト

- \mathcal{R}_0 = the number of cases one case generates within its infectious period, in a totally susceptible population
- \bullet threshold condition for the disease transmission: $\mathcal{R}_0>1$

<日

<</p>

- \mathcal{R}_0 = the number of cases one case generates within its infectious period, in a totally susceptible population
- \bullet threshold condition for the disease transmission: $\mathcal{R}_0>1$

 $DFE: (\tilde{S}_H, \tilde{E}_H, \tilde{A}_H, \tilde{D}_H, \tilde{V}_H, \tilde{C}_e, \tilde{C}_m, \tilde{C}_\nu) = \\ (\theta(\alpha), 0, 0, 0, 1 - \theta(\alpha), \tilde{C}_e^*(\alpha), \tilde{C}_m^*(\alpha), \tilde{C}_\nu^*(\alpha))$

く 目 ト く ヨ ト く ヨ ト

- \mathcal{R}_0 = the number of cases one case generates within its infectious period, in a totally susceptible population
- \bullet threshold condition for the disease transmission: $\mathcal{R}_0>1$

$$DFE: (\tilde{S}_H, \tilde{E}_H, \tilde{A}_H, \tilde{D}_H, \tilde{V}_H, \tilde{C}_e, \tilde{C}_m, \tilde{C}_\nu) = \\ (\theta(\alpha), 0, 0, 0, 1 - \theta(\alpha), \tilde{C}_e^*(\alpha), \tilde{C}_m^*(\alpha), \tilde{C}_\nu^*(\alpha))$$

By analyzing the threshold condition for the stability of DFE \ldots

$$\mathcal{R}_0^{\star} = C^{\star} \int_0^{\infty} e^{-M(\alpha)} \left(\beta_D \mathcal{D}(\alpha, 0) + \beta_A \mathcal{A}(\alpha, 0)\right) d\alpha$$

- ロ ト - (理 ト - (ヨ ト - (ヨ ト -)

- \mathcal{R}_0 = the number of cases one case generates within its infectious period, in a totally susceptible population
- \bullet threshold condition for the disease transmission: $\mathcal{R}_0>1$

$$DFE: (\tilde{S}_{H}, \tilde{E}_{H}, \tilde{A}_{H}, \tilde{D}_{H}, \tilde{V}_{H}, \tilde{C}_{e}, \tilde{C}_{m}, \tilde{C}_{\nu}) = \\ (\theta(\alpha), 0, 0, 0, 1 - \theta(\alpha), \tilde{C}_{e}^{*}(\alpha), \tilde{C}_{m}^{*}(\alpha), \tilde{C}_{\nu}^{*}(\alpha))$$

By analyzing the threshold condition for the stability of DFE \ldots

$$\mathcal{R}_{0}^{\star} = C^{\star} \int_{0}^{\infty} e^{-M(\alpha)} \left(\beta_{D} \mathcal{D}(\alpha, 0) + \beta_{A} \mathcal{A}(\alpha, 0)\right) d\alpha$$

$$C^{\star} = \frac{\mu_{H}^{\star} b_{m}^{2} b_{h}^{2} N_{M} N_{H} \beta_{M} \sigma}{(b_{m} N_{M} + b_{h} N_{H})^{2} (\sigma + \mu_{M}) \mu_{M}}, \quad M(\alpha) := \int_{0}^{\alpha} \mu_{H}(a) da$$

$$\mathcal{E}(\alpha, 0) = \int_{0}^{\alpha} e^{-h(\alpha - a)} \theta(a) da,$$

$$\mathcal{D}(\alpha, 0) = \int_{0}^{\alpha} e^{-r_{D}(\alpha - a)} \rho h \mathcal{E}(a, 0) da,$$

$$\mathcal{A}(\alpha, 0) = \int_{0}^{\alpha} e^{-r_{A}(\alpha - a)} \left(h(1 - \rho) \mathcal{E}(a, 0) + r_{D}(1 - \phi) \mathcal{D}(a, 0)\right) da.$$

- \mathcal{R}_0 = the number of cases one case generates within its infectious period, in a totally susceptible population
- \bullet threshold condition for the disease transmission: $\mathcal{R}_0>1$

$$DFE: \quad (\tilde{S}_H, \tilde{E}_H, \tilde{A}_H, \tilde{D}_H, \tilde{V}_H, \tilde{C}_e, \tilde{C}_m, \tilde{C}_\nu) = \\ (\theta(\alpha), 0, 0, 0, 1 - \theta(\alpha), \tilde{C}_e^*(\alpha), \tilde{C}_m^*(\alpha), \tilde{C}_\nu^*(\alpha))$$

By analyzing the threshold condition for the stability of DFE \ldots

$$\mathcal{R}_{0}^{\star} = C^{\star} \int_{0}^{\infty} e^{-M(\alpha)} \left(\beta_{D} \mathcal{D}(\alpha, 0) + \beta_{A} \mathcal{A}(\alpha, 0)\right) d\alpha$$

$$C^{\star} = \frac{\mu_{H}^{\star} b_{n}^{2} b_{h}^{2} N_{M} N_{H} \beta_{M} \sigma}{(b_{m} N_{M} + b_{h} N_{H})^{2} (\sigma + \mu_{M}) \mu_{M}}, \quad M(\alpha) := \int_{0}^{\alpha} \mu_{H}(a) da$$

$$\mathcal{E}(\alpha, 0) = \int_{0}^{\alpha} e^{-h(\alpha - a)} \theta(a) da,$$

$$\mathcal{D}(\alpha, 0) = \int_{0}^{\alpha} e^{-r_{D}(\alpha - a)} \rho h \mathcal{E}(a, 0) da, \qquad \text{Interpretation?}$$

$$\mathcal{A}(\alpha, 0) = \int_{0}^{\alpha} e^{-r_{A}(\alpha - a)} \left(h(1 - \rho) \mathcal{E}(a, 0) + r_{D}(1 - \phi) \mathcal{D}(a, 0)\right) da.$$

Zhuolin Qu (UTSA)

$$\mathcal{R}_{0}^{\star} = \left(b_{M}\beta_{M}\frac{\sigma}{\sigma + \mu_{M}}\frac{1}{\mu_{M}}\right)\left(b_{H}\int_{0}^{\infty}\mu_{H}^{*}e^{-M(\alpha)}\left(\beta_{D}\mathcal{D}(\alpha,0) + \beta_{A}\mathcal{A}(\alpha,0)\right)d\alpha\right)$$
$$=:\mathcal{R}_{MH}\times\mathcal{R}_{HM}$$

- $\mathcal{R}_{\textit{MH}}$: Mosquito \rightarrow human transmission route
- $\mathcal{R}_{\textit{HM}}$: Human \rightarrow mosquito transmission route

э

イロト イボト イヨト イヨト

$$\mathcal{R}_{0}^{\star} = \left(b_{M}\beta_{M}\frac{\sigma}{\sigma+\mu_{M}}\frac{1}{\mu_{M}}\right)\left(b_{H}\int_{0}^{\infty}\mu_{H}^{*}e^{-M(\alpha)}\left(\beta_{D}\mathcal{D}(\alpha,0)+\beta_{A}\mathcal{A}(\alpha,0)\right)d\alpha\right)$$
$$=:\mathcal{R}_{MH}\times\mathcal{R}_{HM}$$

- $\mathcal{R}_{\textit{MH}}$: Mosquito \rightarrow human transmission route
- $\mathcal{R}_{\textit{HM}}$: Human \rightarrow mosquito transmission route

$$\mathcal{R}_{MH} = b_M \beta_M \frac{\sigma}{\sigma + \mu_M} \frac{1}{\mu_M} \xrightarrow{S_M} E_M \xrightarrow{\sigma} I_M}{\downarrow} \sum_{\substack{\mu_M \\ \mu_M \\ \mu_M$$

э

イロト イボト イヨト イヨト

•
$$\mathcal{R}_{HM} = b_H \int_0^\infty \mu_H^* e^{-M(\alpha)} \left(\beta_D \mathcal{D}(\alpha, 0) + \beta_A \mathcal{A}(\alpha, 0)\right) d\alpha$$

- $\mathcal{E}(\alpha, 0) = \int_0^\alpha e^{-h(\alpha-a)} \theta(a) da,$
- $\mathcal{D}(\alpha, 0) = \int_0^\alpha e^{-r_D(\alpha-a)} \rho h \mathcal{E}(a, 0) da,$

3

イロト イヨト イヨト イヨト

•
$$\mathcal{R}_{HM} = b_H \int_0^\infty \mu_H^* e^{-M(\alpha)} (\beta_D \mathcal{D}(\alpha, 0) + \beta_A \mathcal{A}(\alpha, 0)) d\alpha$$

- $\mathcal{E}(\alpha, 0) = \int_0^\alpha e^{-h(\alpha - a)} \theta(a) da,$
- $\mathcal{D}(\alpha, 0) = \int_0^\alpha e^{-r_D(\alpha - a)} \rho h \mathcal{E}(a, 0) da,$

•
$$\mathcal{R}_{HM} = b_H \int_0^\infty \mu_H^* e^{-M(\alpha)} \left(\beta_D \mathcal{D}(\alpha, 0) + \beta_A \mathcal{A}(\alpha, 0)\right) d\alpha$$

-
$$\mathcal{E}(lpha,0)=\int_0^lpha e^{-h(lpha-a)} heta(a)\,da,$$

-
$$\mathcal{D}(\alpha, 0) = \int_0^\alpha e^{-r_D(\alpha-a)} \rho \, h \, \mathcal{E}(a, 0) \, da,$$

• $h\mathcal{E}(\alpha, 0) = Probability$ an age- α person in E_H

• • = • • = •

- $\mathcal{R}_{HM} = b_H \int_0^\infty \mu_H^* e^{-M(\alpha)} \left(\beta_D \mathcal{D}(\alpha, 0) + \beta_A \mathcal{A}(\alpha, 0)\right) d\alpha$
- $\mathcal{E}(\alpha, 0) = \int_0^\alpha e^{-h(\alpha-a)}\theta(a) \, da$,

-
$$\mathcal{D}(\alpha, 0) = \int_0^\alpha e^{-r_D(\alpha-a)} \rho \, h \, \mathcal{E}(a, 0) \, da,$$

• $h\mathcal{E}(\alpha, 0) = Probability$ an age- α person in E_H

- $\mathcal{R}_{HM} = b_H \int_0^\infty \mu_H^* e^{-M(\alpha)} \left(\beta_D \mathcal{D}(\alpha, 0) + \beta_A \mathcal{A}(\alpha, 0)\right) d\alpha$
- $\mathcal{E}(\alpha, 0) = \int_0^\alpha e^{-h(\alpha-a)}\theta(a) \, da$,

-
$$\mathcal{D}(\alpha, 0) = \int_0^\alpha e^{-r_D(\alpha-a)} \rho \, h \, \mathcal{E}(a, 0) \, da,$$

• $h\mathcal{E}(\alpha,0) = Probability$ an age- α person in E_H

- $\mathcal{R}_{HM} = b_H \int_0^\infty \mu_H^* e^{-M(\alpha)} \left(\beta_D \mathcal{D}(\alpha, 0) + \beta_A \mathcal{A}(\alpha, 0)\right) d\alpha$
- $\mathcal{E}(\alpha, 0) = \int_0^\alpha e^{-h(\alpha-a)} \theta(a) \, da$,
- $\mathcal{D}(\alpha,0) = \int_0^\alpha e^{-r_D(\alpha-a)} \rho \, h \, \mathcal{E}(a,0) \, da$,
- $h\mathcal{E}(\alpha, 0) = Probability$ an age- α person in E_H
- $\mathcal{D}(\alpha, 0) =$ expected time an age- α person spends in D_H

• $\mathcal{R}_{HM} = b_H \int_0^\infty \mu_H^* e^{-M(\alpha)} \left(\beta_D \mathcal{D}(\alpha, 0) + \beta_A \mathcal{A}(\alpha, 0)\right) d\alpha$

-
$$\mathcal{E}(lpha,0)=\int_0^lpha e^{-h(lpha-a)} heta(a)\,da,$$

-
$$\mathcal{D}(\alpha,0) = \int_0^\alpha e^{-r_D(\alpha-a)} \rho \, h \, \mathcal{E}(a,0) \, da,$$

- $h\mathcal{E}(\alpha,0) = Probability$ an age- α person in E_H
- $\mathcal{D}(\alpha, 0) =$ expected time an age- α person spends in D_H
- $E_H \rightarrow D_H$ route only at DFE

•
$$\mathcal{R}_{HM} = b_H \int_0^\infty \mu_H^* e^{-M(\alpha)} \left(\beta_D \mathcal{D}(\alpha, 0) + \beta_A \mathcal{A}(\alpha, 0)\right) d\alpha$$

-
$$\mathcal{A}(\alpha,0) = \int_0^{\alpha} e^{-r_A(\alpha-a)} \Big(h(1-\rho) \mathcal{E}(a,0) + r_D(1-\phi) \mathcal{D}(a,0) \Big) \, da$$

-
$$h \mathcal{E}(\alpha, 0) =$$
 Probability an age- α person in E_H

- $r_D \mathcal{D}(lpha, \mathbf{0}) =$ Probability an age-lpha person in D_H

.

•
$$\mathcal{R}_{HM} = b_H \int_0^\infty \mu_H^* e^{-M(\alpha)} \left(\beta_D \mathcal{D}(\alpha, 0) + \beta_A \mathcal{A}(\alpha, 0)\right) d\alpha$$

-
$$\mathcal{A}(\alpha,0) = \int_0^\alpha e^{-r_A(\alpha-a)} \Big(h(1-\rho) \mathcal{E}(a,0) + r_D(1-\phi) \mathcal{D}(a,0) \Big) \, da$$

- $h \mathcal{E}(\alpha, 0) =$ Probability an age- α person in E_H
- $r_D \mathcal{D}(\alpha, 0) =$ Probability an age- α person in D_H
- $\mathcal{A}(\alpha, 0) =$ expected time an age- α person spends in A_H

・ 同 ト ・ ヨ ト ・ ヨ ト

•
$$\mathcal{R}_{HM} = b_H \int_0^\infty \mu_H^* e^{-M(\alpha)} \left(\beta_D \mathcal{D}(\alpha, 0) + \beta_A \mathcal{A}(\alpha, 0)\right) d\alpha$$

2

<ロト <回ト < 回ト < 回ト -

•
$$\mathcal{R}_{HM} = b_H \int_0^\infty \mu_H^* e^{-M(\alpha)} \left(\beta_D \mathcal{D}(\alpha, 0) + \beta_A \mathcal{A}(\alpha, 0)\right) d\alpha$$

- $\mathcal{R}_{HM,\alpha} = b_H \beta_D \mathcal{D}(\alpha, 0) + b_H \beta_A \mathcal{A}(\alpha, 0)$

= new cases produced by infectious age- α people

э

イロト イポト イヨト イヨト

•
$$\mathcal{R}_{HM} = b_H \int_0^\infty \mu_H^* e^{-M(\alpha)} \left(\beta_D \mathcal{D}(\alpha, 0) + \beta_A \mathcal{A}(\alpha, 0)\right) d\alpha$$

- $\mathcal{R}_{HM,\alpha} = b_H \beta_D \mathcal{D}(\alpha, 0) + b_H \beta_A \mathcal{A}(\alpha, 0)$
= new cases produced by infectious age- α people
- $\mathcal{R}_{HM} = \int_0^\infty \mathcal{R}_{HM,\alpha} P_H(\alpha) d\alpha$,
where $P_H(\alpha) = \mu_H^* e^{-M(\alpha)}$, age distribution of population at DFE

2

<ロト <回ト < 回ト < 回ト -

•
$$\mathcal{R}_{HM} = b_H \int_0^\infty \mu_H^* e^{-M(\alpha)} \left(\beta_D \mathcal{D}(\alpha, 0) + \beta_A \mathcal{A}(\alpha, 0)\right) d\alpha$$

- $\mathcal{R}_{HM,\alpha} = b_H \beta_D \mathcal{D}(\alpha, 0) + b_H \beta_A \mathcal{A}(\alpha, 0)$
= new cases produced by infectious age- α people
- $\mathcal{R}_{HM} = \int_0^\infty \mathcal{R}_{HM,\alpha} P_H(\alpha) d\alpha$,
where $P_H(\alpha) = \mu_H^* e^{-M(\alpha)}$, age distribution of population at DFE

The overall basic reproduction number

$$\mathcal{R}_0 = \sqrt{\mathcal{R}_0^\star} = \sqrt{\mathcal{R}_{MH} \times \mathcal{R}_{HM}}$$

2

イロト イヨト イヨト イヨト

Outlines

Mathematical modeling of malaria with immunity

3) Basic reproduction number \mathcal{R}_0

4 Numerical examples

э

イロト イポト イヨト イヨト

Numerical discretization

Numerical scheme to mimic biological properties...

- positivity preserving
- conservation law of population (people don't disappear magically)

Not too severe time-step constraint

$$\frac{\partial S_H}{\partial t} + \frac{\partial S_H}{\partial \alpha} = -\Lambda_H(t)S_H + \phi r_D D_H + r_A A_H - \mu_H(\alpha)S_H \quad \text{*no vaccine}$$

• uniform grid
$$(\alpha_k, t_n)$$
, $\Delta \alpha = \Delta t$
- LHS $= \frac{\partial S_H}{\partial t} + \frac{\partial S_H}{\partial \alpha} \rightarrow \frac{S_H^{k+1,n+1} - S_H^{k,n}}{\Delta t}$
- RHS: "explicit" - "implicit" approach

$$-\Lambda_{H}(t)\underline{S_{H}} + \phi r_{D}D_{H} + r_{A}A_{H} - \mu_{H}(\alpha)\underline{S_{H}}$$

Model calibration

- Assumptions
- no disease-induced mortality
- constant demographic structure
- Immunity linking parameters
- susceptibility to developing clinical disease: ho (age, aEIR)
- aEIR: annual entomological inoculation rate

Immunity profile (age, aEIR)

- low aEIR region (center): flat immunity
- high aEIR region (right): fast decay of maternal immunity after birth and increases as getting older due to repeated exposure

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Impact of immunity feedback

When having dynamic immunity feedback

- As β_M (exposure level) increases, A_H keeps increasing, D_H peaks
- stronger exposure, larger feedback onto progression parameters ρ, ψ , more likely to become A_H than D_H

Impact of immunity feedback

When fixing the population immunity at constant level (low or high)

- as β_M (exposure level) increases, monotone increase in D_H
- worse disease outcome

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Immunity feedback onto age-distributions

Y-axis - fraction of population: $\widetilde{S}_{H}(\alpha) = S_{H}(\alpha)/P_{H}(\alpha)$ at EE

- fast transition near age zero due to maternal protection
- dynamic immunity creates heterogeneity in the age-distributions
- for fixed immunity, almost homogeneous age-distributions

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Immunity feedback onto age-distributions

Dynamic immunity with different exposure level

- amount of heterogeneity depends on the exposure level
- low transmission (left): limited boosting in immunity for age < 3
- high transmission (right): more heterogeneity for children < 15

A B b A B b

Preliminary simulation of RTS,S vaccination

- children complete three doses series around 9 months old
- ν_p^0 : daily per-capita vaccination rate

- drop in the D_H , but slightly higher D_H curve when > 3 years old
- reduced exposure delays the development of exposure-acquired immunity

• • = • • = •

Modeling immunity to malaria with an age-structured PDE Framework

Future work

- model assumptions
- diseased-induced mortality
- growing population in sub-Saharan Africa
- vaccination
- more realistic description of RTS,S vaccine
- boosting dose, optimal strategy
- blood-stage vaccine (boosting C_{ν} rather than protection V_H)
- seasonality
- spatial heterogeneity, human movement

< 回 > < 回 > < 回 > <

Acknowledgment

AMS / Mathematics Research Communities - 2021
 "Dynamics of Infectious Diseases: Ecological Models Across Multiple Scales"

Qu Z, Patterson D, Childs L., Edholm C, Ponce J, Prosper O, Zhao L Modeling Immunity to Malaria with an Age-Structured PDE Framework, arXiv

・ロト ・ 同ト ・ ヨト ・ ヨト

Acknowledgment

AMS / Mathematics Research Communities - 2021
 "Dynamics of Infectious Diseases: Ecological Models Across Multiple Scales"

Qu Z, Patterson D, Childs L., Edholm C, Ponce J, Prosper O, Zhao L Modeling Immunity to Malaria with an Age-Structured PDE Framework, arXiv Thank you!

Zhuolin Qu (UTSA)

・ロト ・ 同ト ・ ヨト ・ ヨト