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A B S T R A C T

Chlamydia trachomatis (Ct) is the most reported sexually transmitted infection in the United States, with a
major cause of infertility, pelvic inflammatory disease, and ectopic pregnancy among women. Despite decades
of screening women for Ct, rates increase among young African Americans (AA). We create and analyze
a heterosexual agent-based network model to help understand the spread of Ct. We calibrate the model
parameters to agree with survey data showing Ct prevalence of 12% of the women and 10% of the men in the
15–25 year-old AA in New Orleans, Louisiana. Our model accounts for both long-term and casual partnerships.
The network captures the assortative mixing of individuals by preserving the joint-degree distributions observed
in the data. We compare the effectiveness of intervention strategies based on randomly screening men, notifying
partners of infected people, which includes partner treatment, partner screening, and rescreening for infection.
We compare the difference between treating partners of an infected person both with and without testing
them. We observe that although increased Ct screening, rescreening, and treating most of the partners of
infected people will reduce the prevalence, these mitigations alone are not sufficient to control the epidemic.
The current practice is to treat the partners of an infected individual without first testing them for infection.
The model predicts that if a sufficient number of the partners of all infected people are tested and treated,
then there is a threshold condition where the epidemic can be mitigated. This threshold results from the
expanded treatment network created by treating an individual’s infected partners’ partners. Although these
conclusions can help design future Ct mitigation studies, we caution the reader that these conclusions are for
the mathematical model, not the real world, and are contingent on the validity of the model assumptions.
1. Introduction

Chlamydia trachomatis (Ct) is the most commonly notified bac-
terial sexually transmitted infection (STI) in the United States, with
over 1.8 million cases each year (Torrone et al., 2014). It is a major
cause of infertility, pelvic inflammatory disease (PID), and ectopic
pregnancy among women (Cohen, 1998; Datta et al., 2012; Gottlieb
et al., 2010a,b; Hillis and Wasserheit, 1996; Lan et al., 1995; Pearlman
and Mcneeley, 1992), and is associated with increased HIV acquisi-
tion (Cohen, 1998; Gottlieb et al., 2010a; Lan et al., 1995; Pearlman
and Mcneeley, 1992; Hillis and Wasserheit, 1996). Untreated, an esti-
mated 14.8% of women with Ct will develop PID (Price et al., 2013),
and 6% will have tubal infertility (Lan et al., 1995). In southern US
cities, including New Orleans, there is an ongoing Ct epidemic in
young African American (AA) adults. A pilot study in this commu-
nity (Kissinger et al., 2014) found an average of 1.5 sexual partners
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per person per three months and approximately 11% prevalence of Ct
infection, with a high acquisition of new sex partners in the month
following treatment (24%). This high prevalence stresses the need for
more effective mitigation efforts to bring the epidemic under control.

Further complicating the issue, some studies show that about
70%–95% of women and 90% of men infected with Ct are asymp-
tomatic and still transmit the infection to others (Farley et al., 2003;
Korenromp et al., 2002). When Ct prevalence is high, regular screening
is a practical approach to identify and treat infected individuals.
The US Preventive Services Task Force (USPSTF) recommends that
sexually active women younger than 25 years old, or older if they
have multiple sexual partners, be screened for Ct as part of their
physical exam (LeFevre, 2014). However, untreated men may serve as
a reservoir and reinfect treated women. We investigate the impact of
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increased Ct screening of men in high prevalence areas such as New
Orleans on the disease prevalence. Typically, when someone is known
to be infected, they are urged to encourage their sexual partners to be
tested for infection. Sometimes the partners are treated without first
being tested for infection. If a partner is tested for infection and found
to be infected, their partners can be notified and treated, identifying a
chain of high-risk individuals who might be spreading Ct.

Transmission-based mathematical models create frameworks that
capture the underlying Ct epidemiology and the heterosexual social
structure underlying the transmission dynamics. Compartmental (Al-
thaus et al., 2010; De Vries et al., 2008, 2006; Tuite et al., 2012;
Townshend and Turner, 2000; Azizi et al., 2017, 2016; Boroojeni, 2018;
Clarke et al., 2012) and agent-based (Adams et al., 2007; Andersen
et al., 2006; Gillespie et al., 2012; Roberts et al., 2007; Low et al.,
2007; Welte et al., 2005) mathematical models can help researchers
to understand the transmission dynamics, and to analyze the efficiency
and cost–benefit analysis of different intervention scenarios to control
Ct infection in different regions. Althaus et al. (2010), and Clarke
et al. (2012) used two different compartmental approaches to test the
impact of screening programs on Ct infection. Both admitted that the
prevalence of Ct is not effectively sensitive to this program alone.
Althaus et al. (2010) identified the time to recovery from infection, and
the duration of the asymptomatic period, as two essential model pa-
rameters governing the disease prevalence. When the underlying model
is not static, Clarke et al. (2012) demonstrated that random screen-
ing, if coupled with partner notification, is a cost-effective mitigation
approach.

The efficiency of screening and partner notification strategies highly
depends on the constructed model; that is, the result of one strategy
can be different in the individual and population-level models (Althaus
et al., 2012). Kretzschmar et al. (1996) used a stochastic network model
based on pair formation and separation process to evaluate different
screening and partner referral methodologies in controlling STIs such
as Ct. Their results for Ct show that treating at least 50% of partners
of infected people can reduce the prevalence to a low level of 0.34%.
They observed that the effectiveness of screening depends on the age,
gender, and other characteristics of the targeted group. In related
research, Kretzschmar et al. (2012) compared the impact of screening
and partner notification for women with screening men for infection.
They found out that partner notification for women increases Ct screen-
ing. The observed that tripling the number of women screened has the
same impact as doubling their partner notification. Their model also
predicted that increased screening of men or notifying their partners to
the program was less effective than these approaches.

The heterosexual network impacts the transmission dynamics, and
the effectiveness of different intervention approaches via capturing
complex heterogeneous and biased mixing and sexual behavior of
agents involved in the transmission process. Models must capture this
underlying heterosexual network to predict how infections spread.
The number of partners a person has (the degree distribution of the
graph) and the number of partners their partners have (the joint-degree
distribution of the graph) both impact this spread. We estimated the
heterosexual degree and joint-degree distribution from the ongoing
New Orleans Check-it of young AAs sexual behavior study (Kissinger
et al., 2014) to generate a heterosexual network that resembles the
sexual activity of this population. We use the B2K algorithm (Boroojeni
et al., 2017) to generate an ensemble of heterosexual networks with
the same joint-degree distribution for sexual partnerships in our New
Orleans AA modeled population.

Heterosexual partnerships are divided into long-term (primary) and
short-term (casual) relationships. The casual partners change after a
time, ranging from a few weeks to more than a year, while primary
partners are maintained throughout the simulation. When changing
casual partnerships, the degree and joint-degree distribution of this
dynamic network are preserved.
2

We model Ct transmission as a discrete-time Monte Carlo stochastic
event on this dynamic network. The model is initialized to agree with
the current New Orleans Ct prevalence. We use sensitivity analysis to
quantify the effectiveness of different prevention and intervention sce-
narios, including screening men, partner notification, which includes
partner treatment and partner screening (contact tracing), condom-use,
and rescreening.

2. Materials and methods

After describing how we generate the synthetic heterosexual net-
work, we review our Ct transmission model and approaches for miti-
gating the infection.

2.1. Generating synthetic sexual network

In 2016, two data sets were collected in studies for New Orleans,
LA. We based our parameter estimates on a pilot study of community-
based STI testing and treatment for AA men ages 15–25 (Kissinger
t al., 2014), and an Internet-based study of unintended pregnancy
revention interventions for AA women ages 18–19 (Green et al., 2014).
oth studies were reviewed and approved by the Tulane University
nstitutional Review Board. The 202 men and 414 women enrolled in
hese studies were asked how many different heterosexual partners they
ad in the past three months (for women) or two months (for men).
omen were also asked to estimate the average number of partners

hat their partners have had in the past three months. Therefore,
hese survey data provide the number of partners for men and women
nd the number of partners of partners for women in the last three
onths (Kissinger et al., 2014; Green et al., 2014), see Supporting

nformation.
We used the survey results and B2K algorithm in Boroojeni et al.

2017) to generate an ensemble of the bipartite heterosexual networks
f 𝑃𝑚 men and 𝑃𝑤 women. The B2K algorithm in Boroojeni et al.
2017) preserves the degree (number of partners) and joint-degree
number of partners of partners) distributions of nodes (individuals)
stimated from the survey data. The resulting generated networks for
he sexually active population preserve the distribution for the number
f partners that men and women have had in the past three months.
hey also preserve the distribution for the number of partners of their
artners (the joint-degree distribution) (Boroojeni et al., 2017).
𝐞𝐢𝐠𝐡𝐭𝐞𝐝 𝐛𝐢𝐩𝐚𝐫𝐭𝐢𝐭𝐞 𝐧𝐞𝐭𝐰𝐨𝐫𝐤 ∶ Each node denoted by the index i in the

etwork represents a person with a specified gender, and each edge
𝐢𝐣 represents a heterosexual partnership between two nodes i and j.
hat is, we assume that men only have partners from the women
ool and vice versa, and there is no contact between two men or
etween two women. Individuals have different sexual activities per
ay per partner. In the ‘‘You Geaux Girl’’ survey data, women were also
sked about their total number of sexual acts per partner during the
ast three months. We used this data to make the underlying network
s a weighted one, where the weight 0 < 𝑤𝐢𝐣 ≤ 1 for edge 𝐞𝐢𝐣 is
he probability of sexual activity between partners i and j on any
pecific day. We have explained the process in details in Supporting
nformation.
𝐲𝐧𝐚𝐦𝐢𝐜 𝐬𝐞𝐱𝐮𝐚𝐥 𝐚𝐜𝐭 𝐧𝐞𝐭𝐰𝐨𝐫𝐤 ∶ The simulation network is dynamic in

exual act. That is, if for example 𝑤𝐢𝐣 = 1∕7, then the two partners i
nd j engage in a sexual act, on average, once a week. Thus, the edge
etween them is present, on average, once every seven days. This is
mplemented in the model as a stochastic process, that is, every day
he edge 𝐞𝐢𝐣 will exist (turn on) with probability 𝑤𝐢𝐣, or will not exist
turn off) with probability 1 −𝑤𝐢𝐣.
𝐲𝐧𝐚𝐦𝐢𝐜 𝐩𝐚𝐫𝐭𝐧𝐞𝐫𝐬𝐡𝐢𝐩 𝐧𝐞𝐭𝐰𝐨𝐫𝐤 ∶ Depending on the level and the time
f partnership, partners of a person are categorized as primary (long-
erm) and casual (short-term) ones. Because of frequent changes in
asual partners, we should make our network dynamic by first assigning
he partnership level for individuals. Lescano et al. (2006) observed
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that partners of individuals with many partners are most likely casual
partners. On the other hand, individuals with few partners are more
likely to be in a serious relationship. Based on this study and the fact
that, on average, men have more partners than women, we assume
that every man has one primary partner maintained for the entire
simulation; all his other partners are causal. We randomly select his
primary partner from his partners within two years of his age and
have the fewest other partners. We assume that these primary female
partners also consider the male as their primary partner (Lescano
et al., 2006). The structure of the underlying weighted network changes
every 𝑇 days when people change their casual partners. The updated
nderlying network with the new casual partners has the same degree
nd joint-degree distributions as the original network. To change the
asual partners, we use the subgraph of primary partnership as an
nitial sexual network and use the B2K algorithm in Boroojeni et al.
2017) to generate a set of networks. We define 𝑇 as the time between
hanging casual partners. Every 𝑇 days, we update the network by
andomly choosing one network from this set.

.2. Modeling spread of Ct on the network

In our stochastic Susceptible–Infectious–Susceptible (SIS) model, a
erson i at day t is either infected with Ct, 𝐼𝐢(𝑡), or susceptible to being
nfected, 𝑆𝐢(𝑡). During the day 𝑡, an infected person, 𝐼𝐣(𝑡), can infect

any of their susceptible sexual partners, 𝑆𝐢(𝑡). We define 𝜆𝑖𝑗 as the
probability that 𝑆𝐢(𝑡) will be infected by 𝐼𝐣(𝑡) by the end of the day,

𝑆𝐢(𝑡)
𝜆𝑖𝑗
→ 𝐼𝐢(𝑡 + 1). Similarly, we define 𝛾𝐣 as the probability that an

infected person, 𝐼𝐣(𝑡), will recover by the end of the day, 𝐼𝐣(𝑡)
𝛾𝐣
→ 𝑆𝐣(𝑡+1).

𝐓𝐡𝐞 𝐟𝐨𝐫𝐜𝐞 𝐨𝐟 𝐢𝐧𝐟𝐞𝐜𝐭𝐢𝐨𝐧 ∶ 𝜆𝐢𝐣(𝑡) is the probability that a susceptible per-
son 𝑆𝐢 becomes infected on day 𝑡 by 𝐼𝐣. The infection transmission
depends on the probability of a sexual act between person 𝐢 and 𝐣 on
a typical day, as defined by edge weight, 𝑤𝐢𝐣, in the model. We define
𝛽𝑛𝑐 as the probability of transmission per sexual act when a condom is
not used, and 𝛽𝑐 as the reduced probability of transmission per sexual
act when a condom is used. The forces of infection between 𝐢 and 𝐣 for
when condom is not used, 𝜆𝑛𝑐𝐢𝐣 , and for when condom is used, 𝜆𝑐𝐢𝐣, are
defined by

𝜆𝑛𝑐𝐢𝐣 =

{

𝛽𝑛𝑐 with probability 𝑤𝐢𝐣

0 with probability 1 −𝑤𝐢𝐣,

𝜆𝑐𝐢𝐣 =

{

𝛽𝑐 with probability 𝑤𝐢𝐣

0 with probability 1 −𝑤𝐢𝐣 .
(1)

We assumed that condom is 𝜖 = 90% effective in preventing the
infection from being transmitted. That is, condom sensitivity is 90% or
𝛽𝑐 = (1 − 𝜖)𝛽𝑛𝑐 = 0.1𝛽𝑛𝑐 (Trussell and Guthrie, 2007). We assume that
the effectiveness of condoms is independent of the gender of donors and
recipients. We define 𝛽𝑚2𝑤 and 𝛽𝑤2𝑚 as the probabilities of transmission
from men to women and from women to men. When condoms are used,
these parameters are reduced by the factor (1−𝜖). We also assume that
casual partners use condoms a fraction, 𝜅, of the time. That is, if there is
a sexual act between a man node and his casual partner, then they use
a condom with probability 𝜅. The fraction is estimated from the study
byCooper and Orcutt (2000) who observed that condom use was more
common with casual partners than with long-term sexual partners.
𝐑𝐞𝐜𝐨𝐯𝐞𝐫𝐲 𝐟𝐫𝐨𝐦 𝐢𝐧𝐟𝐞𝐜𝐭𝐢𝐨𝐧 ∶ The model accounts for infected people re-
covering through natural recovery or via treatment. All infected people,
if not seeking for treatment, eventually recover and return to sus-
ceptible status. The time for natural (untreated) recovery has an
exponential distribution with an average time of infection of 𝜏𝑛 = 1∕𝛾𝑛
days, where index n refers to natural recovery. When a person is in-
fected, the duration of their infection is determined by a random sample
from this exponential distribution. The case that infected individuals
become recovered through treatment is part on intervention program,
3

explained in details in the next Subsection.
2.3. Intervention strategies

Each year, some of the population is tested for Ct infection through
a routine medical exam (random screening), after observing symptoms,
or after being notified by one of their previous infected partners. We
introduce a list of intervention strategies implemented in our model,
that are random screening, partner notification, and rescreening.
𝐑𝐚𝐧𝐝𝐨𝐦 𝐒𝐜𝐫𝐞𝐞𝐧𝐢𝐧𝐠: We define random screening as testing for infection
when there are no compelling reasons to suspect a person is infected.
For example, random screening might be part of a routine physical
exam and is an effective mitigation policy to identify asymptomatic
infections. We assume that the 𝜎𝑦 fraction of people are randomly
screened each year. Therefore, each day individuals are screened with
probability 𝜎𝑑 = 1− (1 − 𝜎𝑦)

1
365 . It is relatively rare for the Ct screening

test to give a false negative result- the male screening sensitivity is
higher than 94% (Gaydos et al., 2008). Therefore, for simplicity we
assume that screening sensitivity is 100%.
𝐏𝐚𝐫𝐭𝐧𝐞𝐫 𝐍𝐨𝐭𝐢𝐟 𝐢𝐜𝐚𝐭𝐢𝐨𝐧: We assume that an infected person encourages
some of their partners to be treated or tested for infection. We define
𝜃𝑛 as the fraction of their partners who are notified, which 𝜃𝑡 fraction of
hese notified partners follow treatment, and the rest (𝜃𝑠 = 1−𝜃𝑡 fraction
f notified partners) test for the infection. Therefore, a notified partner
s the partner of an infected person who seeks treatment or testing as
direct result of the screening. We can divide all partners of person as

ollow:

(1) Partner Treatment: 𝜃𝑛𝜃𝑡 fraction of all partners that are notified
and treated, without first testing for infection.

(2) Partner Screening: 𝜃𝑛𝜃𝑠 = 𝜃𝑛(1 − 𝜃𝑡) fraction of all partners are
notified and screened for infection and then start treatment if
they are infected.

(3) Do nothing: 1 − 𝜃𝑛 = 1 − 𝜃𝑛𝜃𝑡 − 𝜃𝑛𝜃𝑠 fraction of all partners are
neither tested nor treated.

The model includes a time-lag of 𝜏𝑛 days between the day a person
s found to be infected and the time their partners are notified and
ake action. The selected partners for notification are from the pool of
artners in 𝜏𝑛 days after the infected person was tested.
𝐞𝐬𝐜𝐫𝐞𝐞𝐧𝐢𝐧𝐠: People previously infected are more likely to be reinfected

n the future. Repeated Ct infection can result from sexual activity with
new partner or reinfected by a previously infected partner. We assume

hat a fraction 𝜎𝑟 of the treated people return for retesting after 𝜏𝑟
ays. The time 𝜏𝑟 between treatment and rescreening should be long
nough so that it is likely that the person would be reinfected if one of
heir partners is still infected. If 𝜏𝑟 is too long, then a reinfected person
ould infect others. The current CDC guidelines recommend that people
re rescreened for infection three months after treatment (Peterman
t al., 2006). We use the model to compare the reinfection rates to
elp optimize the time from treatment to rescreening, 𝜏𝑟. The Fig. 1
epresents the schematic of intervention strategies.

Aside from intervention strategy, we assume the time to recover
fter treatment is a log-normal distribution with the parameters of
𝑡 = 1∕𝛾𝑡 days, where index t stands to recovery via treatment and 𝜎2 =
.25. The reason for selecting log-normal distribution is the shape of
istribution, which is non-monotonic. Unlike exponential distribution,
og-normal distribution guarantees that only a few people quickly re-
over. Therefore, the duration of infection for a treated infected person
s defined by a random number chosen from a log-normal distribution,
og (𝜏𝑡, 0.25), rounded to the nearest day. In the model, if that number
f days is smaller than the duration remaining for naturally clearing the
isease, then the shorter time is used for the recovery period.

.4. Model initialization

The initially infected people are not randomly distributed among
he susceptible population. They are distributed as they would be in
n emerging epidemic that started sometime in the past. We call these
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Fig. 1. Flowchart for Ct intervention strategies: These current interventions include screenings, partner notification (including partner treatment and partner screening), and
escreening.
able 1
arameter definitions and values: Whenever possible, the model parameters describing the transmission of Ct infection, the time to recover from infection, the screening rates,
nd partner notifications were estimated from the literature. When the estimates were not available, then the parameters were calibrated so that the biological, behavioral, and
pidemiological model predictions were consistent with the heterosexual AA population being modeled in New Orleans. The probability of transmission per act was calibrated to
baseline prevalence of 12% among women and 10% among men.
Parameter Description Baseline Unit Reference

𝛥𝑡 Time step 1 day –
𝑃 𝑚(𝑃𝑤) Population of men (women) 2000(3000) people Assumed
𝛽𝑚2𝑤 Probability of transmission per act from men to women 0.10 – Calibrated
𝛽𝑤2𝑚 Probability of transmission per act from women to men 0.04 – Calibrated
𝜅 Fraction of times that condoms are used during sex 0.58 – Kissinger et al. (2014)
𝜖 Condom effectiveness 0.90 – Trussell and Guthrie (2007)
1∕𝛾𝑛 Average time to recover without treatment 365 days Molano et al. (2005) and Althaus et al. (2010)
1∕𝛾 𝑡 Average time to recover with treatment 7 days Morre et al. (1998)
𝜎𝑚
𝑦 Fraction of men randomly screened per year 0.05 – Kissinger et al. (2014)

𝜎𝑤
𝑦 Fraction of women randomly screened per year 0.45 – Kissinger et al. (2014)

𝜎𝑟 Fraction of infected people return for rescreening 0.10 – Assumed
Sensitivity Screening sensitivity 100% – Assumed
𝜃𝑛 Fraction of the partners of an infected person who are

notified and do test or treated for infection
0.26 – Kissinger et al. (2014)

𝜃𝑡 Fraction of notified partners of an infected person who
are treated without testing

0.75 – Kissinger et al. (2014)

𝜃𝑠 Fraction of notified partners of an infected person who
are tested and treated for infection

0.25 – Kissinger et al. (2014)

𝜏𝑛 Time lag of partner notification 5 days Assumed
𝜏𝑅 Time lag of re-screening 100 days Calculated
𝑇 Time period for casual partner change 60 days Assumed
initial conditions balanced because when the simulation starts, the in-
fected and susceptible populations, along with the duration of infection,
are in balance with the distributions for an emerging epidemic (Hyman
et al., 2001). When the initial conditions are not naturally balanced, a
rapid (nonphysical) initial transient of infections quickly settles down
as the infected and susceptible populations transition to a realistic
infection network.

To define the balanced initial conditions, we start an epidemic in
the past by randomly infecting a few high degree individuals. We then
advance the simulation until the epidemic grows to the prevalence of 𝑖0.
We then reset the time clock to zero and use this distribution of infected
people, complete with their current infection timetable, as our initial
conditions. Because these are stochastic simulations, we reinitialize
each simulation by seeding different initial infected individuals when
doing an ensemble of simulations.

3. Results

We define the local sensitivity analysis of different mitigations on
Ct prevalence at a quasi-stationary state. The figures show the average
4

of 50 independent stochastic simulations. All of the realizations start
at the same initial point obtained with the model baseline parameters
in Table 1, unless stated otherwise.

3.1. Model initialization

We initialize our model based on estimates for the current Ct
epidemic of 11% among AA young adults residing in New Orleans.
These estimates have a standard error of about 1% and are based on
the current Check it survey data of 1084 AAs in New Orleans (Kissinger
et al., 2014). The 𝑖0 = 8% balanced initial infected individuals are
randomly distributed in an otherwise susceptible population.

There is a wide range of reported values for the probability of
transmission per sexual act from woman to man, 𝛽𝑤2𝑚, or from man
to woman, 𝛽𝑚2𝑤, ranging from 0.04 to 0.16 (Low et al., 2007; Welte
et al., 2005; Adams et al., 2007; Andersen et al., 2006; Gillespie et al.,
2012; Roberts et al., 2007). In order to estimate these unknown pa-
rameters, we calibrate them to the current Ct prevalence using Method
of Simulated Moments (MSM) (McFadden, 1989). We choose the un-
known parameter as 𝛽𝑚2𝑤 and 𝛽𝑤2𝑚 and the first moment, mean of the
prevalence at quasi-stationary state, as 11% of infected individuals. The
Fig. 2 illustrates the typical progression of the epidemic to reach this

11% current Ct prevalence.



Epidemics 35 (2021) 100456A. Azizi et al.
Fig. 2. Prevalence increases to reach the current quasi-stationary state: The light areas
are the result for 50 different stochastic simulations, and the dark curve is the mean
value of those simulations. About 11% of the population are infected at the quasi-
stationary state for the baseline model parameters. The standard deviation for the
prevalence is approximately 1%. This is in agreement with the current prevalence in
New Orleans 15–25 year-old AA population.

Fig. 3. Sensitivity analysis for screening men: The circles are the average of 50 different
stochastic simulations, and the error bars are 95% confidence intervals. Screening
men randomly by 50% reduces prevalence by 7%, which is not effective enough to
implement as a sole intervention.

3.2. Sensitivity analysis of intervention strategies

To determine the effectiveness of each intervention strategy, we
compare the quasi-stationary state prevalence by varying the interven-
tion parameter while freezing other parameters fixed at their baseline
value.
𝐒𝐜𝐫𝐞𝐞𝐧𝐢𝐧𝐠 𝐌𝐞𝐧: Fig. 3 shows a reduction in the overall Ct prevalence
as the number of men randomly screened for Ct increases from 0 to
50%, 0 ≤ 𝜎𝑚𝑦 ≤ 0.5. The least-square linear fit suggests that the
quasi-stationary state Ct prevalence will decrease by 1.4% for every
additional 10% of the men screened during a year. Though a drop
of seven percent in prevalence is an admirable decrease, increased
screening alone would not be sufficient to control Ct.
𝐏𝐚𝐫𝐭𝐧𝐞𝐫 𝐍𝐨𝐭𝐢𝐟 𝐢𝐜𝐚𝐭𝐢𝐨𝐧: We first evaluate the efficiency of partner no-
tification under two scenarios: partner treatment only and partner
screening only. We then compare partner treatment and partner screen-
ing for different levels of partner notification. To evaluate the impact
of partner notification, we have simulated two scenarios:
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• Partner Treatment Only: The Fig. 4a shows the impact of part-
ner notification under the assumption that all the notified part-
ners treat themselves, that is, 𝜃𝑡 = 1. The least-square linear fit
suggests that the quasi-stationary state Ct prevalence decreases by
0.07 for every 10% increment in the fraction of notified partners.

• Partner Screening Only: The Fig. 4b shows the impact of partner
notification under the assumption that all the notified partners
do screening, that is, 𝜃𝑠 = 1, for several time period for casual
partner change: when 𝑇 = 60 days (black line), 𝑇 = 365 days
(blue curve), and 𝑇 = 730 days (red curve). The simulations
predict that partner notification and partner screening are more
effective when men keep their casual partnerships for longer
times. This is expected since when a partner is identified as being
infected, and this partner’s other (long-term) partners are tested,
then the contact tracing is a branching process and is more likely
to identify and treat the underlying infected sexual network. The
resulting nonlinear effect is evident in the logistic-shaped curve
𝜃𝑛 when the casual-partners change less often or never change,
Fig. 4c.

The Fig. 4d compares the impact of partner treatment and partner
screening on quasi-stationary state prevalence in the whole population
for various levels of partner notification changing from 0.1 to 0.8. For
small values of 𝜃𝑛, that is, when few partners are notified and take
action, partner treatment and partner screening have almost the same
impact on controlling the prevalence. For example, for 𝜃𝑛 = 0.10 or
0.20, the prevalence versus 𝜃𝑡 = 1 − 𝜃𝑠 is flat. For big values of 𝜃𝑛, that
is, when most of the partners are notified and take action, the partner
screening becomes a highly successful mitigation policy. For example
take the case 𝜃𝑛 = 𝜃𝑡 = 𝜃𝑠 = 0.5, thus, the prevalence reduction is
6%. Compared with all notified partners following treatment without
testing, 𝜃𝑡 = 1, which reduces the prevalence by only 1%, conditional
percolation is more effective. But compared to all notified partners fol-
lowing test and treat if necessary, 𝜃𝑠 = 1, which reduces the prevalence
by 11%, this combined scenario is not the one to select.
𝐑𝐞𝐬𝐜𝐫𝐞𝐞𝐧𝐢𝐧𝐠: Past studies have observed that about 25% of the re-
screened people are again infected by three months. We plot the cu-
mulative distribution of time between screening and reinfection events
in Fig. 5a. The Figure demonstrates that our model predicts that about
25% of treated individuals are again infected after 100 days. The model
also shows that the treated population’s Ct prevalence exceeds the
prevalence for the whole population after two months and suggests that
the CDC guidelines for rescreening could be shortened slightly, Fig. 5a.

We varied the fraction of treated individuals who return for re-
screening at 100 days after being treated to study if increasing the rate
that people return for rescreening would have a significant impact on
Ct prevalence, The Fig. 5b quantifies Ct’s prevalence at quasi-stationary
state dependent on rescreening rate 𝜎𝑟: there is a negative correlation
between the quasi-stationary state prevalence and 𝜎𝑟. If 𝜎𝑟 fraction
of screened individuals follow screening again, then the prevalence
reduces roughly by 0.02𝜎𝑟 (𝑆𝐼 = 2%). We observe that this rescreening
result is insensitive to partner change in the network.

4. Discussion

Using a heterosexual behavior survey and Ct prevalence data for
the sexually active young AA population in New Orleans, we created
an agent-based dynamic network model to understand how the infec-
tion spreads and what mitigation approaches can slow it down. In
the model, men and women are represented by the network nodes,
and edges between the nodes characterize the sexual partnerships.
The edges between partners in the network dynamically appear and
disappear each day, depending on if the individuals engage in sex on
that day. Men’s partners are divided into primary and casual ones, and
their casual partners are changing over time. One novel property of our
model is that the network’s joint-degree distribution, which captures
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Fig. 4. Sensitivity analysis for partner notification: The circles are the mean of 50 different stochastic simulations, and error bars are 95% confidence intervals. (4a): Partner
notification for partner treatment only scenario is only mildly effective, and the prevalence remains high (8%), even when all the partners of treated people are treated. (4b): The
figure illustrates how the effectiveness of partner notification increases as casual partners are changed less often from every 60 days (black line), every year (blue curve), and every
two years (red curve). Partner notification for the partner screening only scenario is more effective in situations where the casual partners less often. (4c): Partner notification for
the partner screening only scenario and for the static network is highly effective when 𝜃𝑛 is big enough, that is, when 𝜃𝑛 ≥ 0.4 and 𝜃𝑠 = 1, the Ct prevalence rapidly decays to
ero. (4d): When only a few partners of an infected person are notified, then partner treatment and partner screening have a similarly small impact on Ct prevalence. When more
artners of infected people get notified, 𝜃𝑛 increases, then the partner screening strategy is more effective in controlling the infection.
Fig. 5. Sensitivity analysis for rescreening: The circles are the mean of 50 different stochastic simulations, and error bars are 95% confidence intervals. (5a): Truncated cumulative
probability distribution of time between treatment and reinfection with Ct shows that about 25% of the treated people are again infected after 100 days. (5b): Rescreening all the
infected people reduces the prevalence by only 2%.
the correlation of an individual’s risk (their number of partners) with
their partner’s risk (number of partners of their partners), is preserved
while changing casual partners. That is, the new network preserves
the underlying sexual network structure while the topology changes to
capture the impact of people changing their casual partnerships.

We use this model to quantify the impact of increasing screening
of men for infection, partner notification, and rescreening of treated
individuals on reducing Ct prevalence. We observed that increasing Ct
screening of men has a modest impact on reducing Ct prevalence in the
young adult AA in New Orleans, Fig. 3. Our model predicts that starting
at a baseline assumption of 11% prevalence and 45% of the women
are being screened each year for Ct, then increasing the screening
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of men from 0% to 50% would reduce the overall Ct prevalence to
8%. Our observation that partner positivity is insensitive to screening
is consistent with previous studies such as Clarke et al. (2012) and
Kretzschmar et al. (2012). Kretzschmar also observed adding men
screening does not show an effective result in reducing Ct positivity.

In evaluating the effectiveness of partner notification, we assumed
some of the partners of an infected person would seek treatment with-
out testing, (partner treatment) or be screened for infection, (partner
screening). We observed that treating the notified partners without
testing has only a modest impact on Ct prevalence. This practice,
although common in disease control today, is not as effective as partner
screening. When individuals change their partner less frequently, and
the partners of an infected person were tested before treatment, then

there will be a tipping point within which partner screening would
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bring the epidemic under control. For example, when casual partners
do not change very often, then when over 40% of notified partners of
all the infected people are screened for infection, the Ct prevalence
rapidly decreased to very low levels, Fig. 4c. This critical threshold
represents the partner screening level, where a contact tracing tree can
spread through the heterosexual network to identify and treat most of
the infected people. Our model indicates that this is by far the most
effective approach for bringing the epidemic under control.

However, partner screening is more expensive than partner treat-
ment. The partner treatment and screening suggests that when the
fraction of partners took action (𝜃𝑛 is small), then partner screening
may not be a good strategy compared to partner treatment. However,
if a large enough fraction of an infected person’s partners are notified,
then either testing and treating (partner screening) can effectively con-
trol the spread of Ct. These results of the impact of partner notification
are close to results from Kretzschmar et al. (1996) who found for Ct,
contact tracing is less effective at lower percentages when partners are
treated, but with increasing levels of contact tracing, it will be a highly
effective intervention strategy.

Via rescreening, infected individuals return for testing a few months
after being treated. We used the model to estimate the probability that
a treated person would be reinfected as a function of the time since they
were treated. We observed that for the case of 13% infected population,
about 25% of the treated population were reinfected three months after
treatment. Although the rescreening has only a small impact on the
overall Ct prevalence, it is an effective way of identifying reinfection.
Even though there is a high chance of reinfection when the individual’s
behavior does not change, we do not observe an effective impact on the
prevalence of Ct by monitoring infected individuals. Similar to screen-
ing, rescreening program is not effective as sole intervention because
it is not able to find the chain of infection like partner screening. On
the other hand, the sensitivity of prevalence to rescreening is less than
that of screening, indicating the fact that for a limited budget, the idea
of finding more people to screen, random screening, is more effective
than frequent screening for fewer people.

Although our model considers different important factors of Ct
transmission and assesses the relative impact of different mitigation ap-
proaches, it is still too simplistic to be used for quantitative predictions.
Our current model preserves the underlying statistical properties of the
heterosexual network by retaining the same joint degree distribution
for the network while changing casual partners. In our future models,
we will focus on improving the heterosexual network dynamics as
people change their partners. One of the most important behaviors to
capture in the model is how often condoms are used in long-term and
casual partnerships. Our model includes condom use, but it does not
account for behavior changes, such as increased condom use after being
treated for the infection. Our future research will improve the model by
relaxing joint-degree distribution up to some error and then quantify
the impact of counseling and behavioral changes such as increasing
condom use or partner notification rates.

Our bipartite heterosexual network model was constructed based
on the correlations between the number of partners a person has and
their partners’ number of partners. For our future work, we will extend
our assortative mixing model to improve our assumptions where sexual
partnerships are better characterized by their ages, ethnicity, social
groups, economic status, and geographic location. We will focus on
validating the model predictions and identifying which trends and
quantities can and cannot be predicted within the model uncertainty
limits. Our preliminary studies indicate that this paper’s qualitative
findings are relatively insensitive to adding these additional mixing
constraints. Although the model is still too simple to directly guide mit-
igation efforts, the qualitative trends predicted by these simulations can
help design studies to quantify the effectiveness of different mitigation
efforts.
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