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Abstract

Numerical simulations of phase-field models require long time computations and therefore
it is necessary to develop efficient and highly accurate numerical methods. In this paper, we
propose fast and stable explicit operator splitting methods for both one- and two-dimensional
nonlinear diffusion equations for thin film epitaxy with slope selection and Cahn-Hilliard
equation. The equations are split into nonlinear and linear parts. The nonlinear part is
solved using a method of lines together with an efficient large stability domain explicit ODE
solver. The linear part is solved by a pseudo-spectral method, which is based on the exact
solution and thus has no stability restriction on the time-step size. We demonstrate the
performance of the proposed methods on a number of one- and two-dimensional numerical
examples, where different stages of coarsening such as the initial preparation, alternating
rapid structural transition and slow motion can be clearly observed.
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1 Introduction

Phase-field models have been recently introduced to describe interfacial phenomena. They were
originally derived for the microstructure evolution and phase transition, but have been recently
extended to many other physical phenomena, such as solid-solid transitions, growth of cancerous
tumors, phase separation of block copolymers, dewetting and rupture of thin liquid films and
infiltration of water into porous medium.

Two of these phase-field models have attracted much attention: the molecular beam epitaxy
(MBE) equation with slop selection

ut = −δ∆2u+∇ · f(∇u), (x, y) ∈ Ω ⊂ R2, t ∈ (0, T ], (1.1)
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and the Cahn-Hilliard (CH) equation

ut = −δ∆2u+ ∆f(u), (x, y) ∈ Ω ⊂ R2, t ∈ (0, T ]. (1.2)

In this paper, we consider
f(ϕ) = ϕ|ϕ|2 − ϕ,

for which the two phase-field models (1.1) and (1.2) become

ut = −δ∆2u+∇ · (|∇u|2∇u−∇u), (x, y) ∈ Ω ⊂ R2, t ∈ (0, T ], (1.3)

and
ut = −δ∆2u+ ∆(u3 − u), (x, y) ∈ Ω ⊂ R2, t ∈ (0, T ]. (1.4)

In (1.3), u is a scaled height function of epitaxial growth of thin films in a co-moving frame and
the parameter δ is a positive surface diffusion constant. In (1.4), u represents the concentration
of one of the two metallic components of the alloy, and the positive parameter δ represents the
interfacial width, which is small compared to the characteristic length of the laboratory scale. An
important feature of these two equations is that they can be viewed as the gradient flow of the
following energy functionals:

E(u) =

∫
Ω

[
δ

2
|∆u|2 +

1

4
(|∇u|2 − 1)2

]
dxdy (1.5)

for the MBE equation and

E(u) =

∫
Ω

[
δ

2
|∇u|2 +

1

4
(u2 − 1)2

]
dxdy (1.6)

for the CH one. As it has been shown in [4, 13], both energy functionals decay in time:

E(u(t)) ≤ E(u(s)), ∀t ≥ s.

Development of highly accurate and efficient numerical methods for (1.3) and (1.4) is a chal-
lenging task. Since explicit schemes usually suffer from severe stability restrictions caused by
the presence of high-order derivative terms and do not obey the energy decay property, semi-
implicit schemes are widely used. In [26], a combined spectral and large time-stepping method
was studied for MBE equation, in which an extra term was added to substantially improve the
stability condition. The same method was applied to the CH equation in [11]. However, this
artificial stabilization term depends on the unknown numerical solutions and if it is taken im-
properly, the resulting numerical scheme would be unstable. In [19], unconditionally energy stable
finite-difference schemes were introduced and adaptive time-stepping strategy was proposed to
select time-steps adaptively based on the time variation of the energy. This technique was also
successfully applied in the simulations of the CH equation in [27].

In this paper, we develop accurate, efficient and robust explicit methods for both (1.3) and
(1.4) subject to periodic boundary conditions. Our methods, which are described in details in §2
and §3, are based on the large stability domain explicit Runge-Kutta methods [2, 3, 12, 16] and
the fast explicit operator splitting method proposed in [5, 6, 8, 9] (see also [7]) in the context of
convection-diffusion equations.
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Following the approach in [5, 6, 8, 9], we split equation (1.3) into the nonlinear,

ut = ∇ · [|∇u|2∇u] (1.7)

and linear,
ut = −∆u− δ∆2u (1.8)

parts. We denote by SN the exact solution operator associated with (1.7) and by SL the exact
solution operator associated with (1.8). Notice that the corresponding energy functionals,

EN (u) =
1

4

∫
Ω

|∇u|4 dxdy (1.9)

and

EL(u) =

∫
Ω

(
δ

2
|∆u|2 − 1

2
|∇u|2 +

1

4

)
dxdy (1.10)

decay. Then, introducing a (small) splitting step ∆t, the solution of the original equation (1.3)
(which is assumed to be available at time t) is evolved using the Strang splitting method [14, 15, 22],
one step of which can be written as

u(x, y, t+ ∆t) = SL(∆t/2)SN (∆t)SL(∆t/2)u(x, y, t).

A similar splitting approach is applied to equation (1.4), for which the linear part is still (1.8) and
the nonlinear one is

ut = ∆(u3). (1.11)

As in the case of the MBE equation, the corresponding energy functionals,

EN (u) =
1

4

∫
Ω

u4 dxdy (1.12)

and

EL(u) =

∫
Ω

(
δ

2
|∇u|2 − 1

2
u2 +

1

4

)
dxdy (1.13)

decay. We stress that even though the linear parts of equations (1.3) and (1.4) are the same, the
functionals (1.10) and (1.13) are different since they are associated with the corresponding parts
of the energy functionals (1.5) and (1.6).

In order to implement the splitting method, the exact solution operators SN and SL have to be
replaced by their numerical approximations. Note that one of the main advantages of the operator
splitting technique is the fact that the nonlinear, (1.7) and (1.11), and linear, (1.8), subproblems,
which are of different nature, can be solved numerically by different methods. First, using the
method of lines, (1.7) and (1.11) can be reduced to systems of ODEs, which can be efficiently
and accurately integrated by large stability domain explicit ODE solvers [2, 3, 12, 16]. Second,
since (1.8) is linear, one can solve it (practically) exactly using, for example, the pseudo-spectral
method. This way, no stability restrictions on solving (1.8) are imposed. A detailed description
of an efficient implementation of the proposed fast and stable explicit operator splitting methods
is given in §2 and §3.
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The paper is organized as follows. In §2, we build 2mth-order semi-discrete finite-difference
schemes for (1.7) and (1.11). The resulting stiff system of ODE is then solved by an efficient
large stability domain explicit ODE solver [1, 17]. In §3, we develop a pseudo-spectral method
for the linear equation (1.8). In §5, we demonstrate the performance of the proposed fast and
stable explicit operator splitting methods on a number of one- (1-D) and two-dimensional (2-D)
numerical examples, where different stages of coarsening such as the initial preparation, alternating
rapid structural transition and slow motion can be clearly observed.

2 Finite-Difference Methods for (1.7) and (1.11)

In this section, we propose efficient explicit finite-difference methods for the degenerate parabolic
equations (1.7) and (1.11). These methods are based on the semi-discretization of (1.7) and (1.11)
followed by the use of an efficient and accurate ODE solver. The ODE solver will be utilized to
evolve the solutions of (1.7) and (1.11) from time t to t+ ∆t. We note that in a general case the
time-steps of the ODE solver denoted by ∆tODE will be smaller than the splitting step ∆t so that
the approximation of SN (∆t) will typically require several ∆tODE steps.

2.1 Finite-Difference Schemes for ut = (u3
x)x

In this section, we design 2mth-order centered-difference schemes for the 1-D version of (1.7):

ut = (u3
x)x, x ∈ [0, L], t ∈ (0, T ]. (2.1)

We consider a uniform grid with nodes xj, such that xj+1 − xj = ∆x, ∀j, and introduce the
following 2mth-order discrete approximation of the ∂

∂x
operator:

(ψx)j :=
m∑

p=−m

αpψj+p = ψx(xj) +O((∆x)2m). (2.2)

For example, when m = 2, we obtain a fourth-order centered-difference approximation by taking

α1 = −α−1 =
2

3∆x
, α2 = −α−2 = − 1

12∆x
.

Equipped with the above approximation of spacial derivatives, we discretize equation (2.1) using
the method of lines as follows:

duj
dt

(t) =
m∑

p=−m

αpHj+p(t) =: Fj(t), (2.3)

where uj(t) denotes the computed point value of the solution at (xj, t), and

Hj(t) := (ux)
3
j(t) with (ux)j(t) :=

m∑
p=−m

αpuj+p(t). (2.4)

Note that the above quantities depend on t, but for the sake of brevity we will suppress this
dependence from now on.
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Remark 2.1 One can show that the coefficients {αp} satisfy the following conditions:

α0 = 0 and αp + α−p = 0, p 6= 0. (2.5)

Theorem 2.1 The semi-discrete schemes (2.3), (2.4) satisfy the following energy decay property:

d

dt
E∆
N ≤ 0,

where E∆
N is a 1-D discrete version of the energy functional (1.9):

E∆
N :=

1

4

∑
j

(ux)
4
j∆x.

Proof: Using (2.3)–(2.5) and the periodicity of computed solutions, one can obtain the following
energy estimate:

d

dt

(
1

4

∑
j

(ux)
4
j

)
=
∑
j

(ux)
3
j

d

dt
[(ux)j]

(2.4)
=
∑
j

Hj
d

dt

[
m∑

p=−m

αpuj+p

]
(2.3)
=
∑
j

Hj

m∑
p=−m

αpFj+p

=
m∑

p=−m

αp
∑
j

HjFj+p =
m∑

p=−m

αp
∑
j

Hj−pFj =
∑
j

Fj

m∑
p=−m

αpHj−p

=
∑
j

Fj

m∑
p=−m

α−pHj+p
(2.5)
=
∑
j

Fj

m∑
p=−m

(−αp)Hj+p
(2.3)
= −

∑
j

F 2
j ≤ 0.

�

2.2 Finite-Difference Schemes for ut = ∇ · [|∇u|2∇u]

We now turn to the 2-D equation (1.7). We consider a uniform grid with nodes (xj, yk), such
that xj+1 − xj = ∆x,∀j, yk+1 − yk = ∆y,∀k, and introduce the following 2mth-order discrete
approximation of the ∂

∂x
and ∂

∂y
operators:

(ψx)j,k :=
m∑

p=−m

αpψj+p,k = ψx(xj, yk) +O((∆x)2m),

(ψy)j,k :=
m∑

p=−m

βpψj,k+p = ψy(xj, yk) +O((∆y)2m).

(2.6)

For example, when m = 2, we obtain a fourth-order centered-difference approximation by taking

α1 = −α−1 =
2

3∆x
, α2 = −α−2 = − 1

12∆x
, β1 = −β−1 =

2

3∆y
, β2 = −β−2 = − 1

12∆y
.

Equipped with the above approximation of spacial derivatives, 2mth-order semi-discrete finite-
difference schemes for (1.7) read:

duj,k
dt

=
m∑

p=−m

αpH
x
j+p,k +

m∑
p=−m

βpH
y
j,k+p =: Fj,k, (2.7)
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where
Hx
j,k := (ux)

3
j,k + (uy)

2
j,k(ux)j,k and Hy

j,k := (uy)
3
j,k + (ux)

2
j,k(uy)j,k (2.8)

with

(ux)j,k :=
m∑

p=−m

αpuj+p,k and (uy)j,k :=
m∑

p=−m

βpuj,k+p. (2.9)

Remark 2.2 One can show that the coefficients {αp} and {βp} satisfy the following conditions:

α0 = 0, β0 = 0 and αp + α−p = 0, βp + β−p = 0, p 6= 0. (2.10)

Theorem 2.2 The semi-discrete schemes (2.7)–(2.9) satisfy the following energy decay property:

d

dt
E∆
N ≤ 0,

where E∆
N is a 2-D discrete version of the energy functional (1.9):

E∆
N :=

1

4

∑
j

|∇huj,k|4∆x∆y

with ∇huj,k := ((ux)j,k, (uy)j,k)
T .

Proof: Using (2.7)–(2.10) and the periodicity of computed solutions, one can obtain the following
energy estimate:

d

dt

(
1

4

∑
j,k

|∇huj,k|4
)

(2.8)
=
∑
j,k

Hx
j,k

d

dt
[(ux)j,k] +

∑
j,k

Hy
j,k

d

dt
[(uy)j,k]

(2.9)
=
∑
j,k

Hx
j,k

d

dt

[
m∑

p=−m

αpuj+p,k

]
+
∑
j,k

Hy
j,k

d

dt

[
m∑

p=−m

βpuj,k+p

]
(2.7)
=
∑
j,k

Hx
j,k

m∑
p=−m

αpFj+p,k +
∑
j,k

Hy
j,k

m∑
p=−m

βpFj,k+p

(2.10)
= −

∑
j,k

Fj,k

m∑
p=−m

αpH
x
j+p,k −

∑
j,k

Fj,k

m∑
p=−m

βpH
y
j,k+p

(2.7)
= −

∑
j,k

F 2
j,k ≤ 0.

�

2.3 Finite-Difference Schemes for ut = ∆(u3)

We now design semi-discrete finite-difference schemes for the 2-D CH equation (1.11). We use the
same grids and the same 2mth-order discrete approximation of the ∂

∂x
and ∂

∂y
operators as in §2.2.

Then, 2mth-order semi-discrete finite-difference schemes for (1.11) read:

duj,k
dt

=
m∑

p=−m

αpH
x
j+p,k +

m∑
p=−m

βpH
y
j,k+p =: Fj,k, (2.11)

where

Hx
j,k :=

m∑
p=−m

αpu
3
j+p,k and Hy

j,k :=
m∑

p=−m

βpu
3
j,k+p. (2.12)
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Theorem 2.3 The semi-discrete schemes (2.11), (2.12) satisfy the following energy decay prop-
erty:

d

dt
E∆
N ≤ 0,

where E∆
N is a 2-D discrete version of the energy functional (1.12):

E∆
N :=

1

4

∑
j

u4
j,k∆x∆y.

Proof: Using (2.10)–(2.12) and the periodicity of computed solutions, one can obtain the following
energy estimate:

d

dt

(
1

4

∑
j,k

u4
j,k

)
=
∑
j,k

u3
j,k

duj,k
dt

(2.11)
=
∑
j,k

m∑
p=−m

αpH
x
j+p,ku

3
j,k +

∑
j,k

m∑
p=−m

βpH
y
j,k+pu

3
j,k

(2.10)
= −

∑
j,k

Hx
j,k

m∑
p=−m

αpu
3
j+p,k −

∑
j,k

Hy
j,k+p

m∑
p=−m

βpu
3
j,k+p

(2.12)
= −

∑
j,k

[
(Hx

j,k)
2 + (Hy

j,k)
2
]
≤ 0.

�

2.4 Large Stability Domain Explicit ODE Solver

The ODE systems (2.3), (2.7) and (2.11) have to be solved numerically. Recall that explicit ODE
solvers typically require time-steps to be ∆tODE ∼ (∆x)2, while implicit ODE solvers can be
made unconditionally stable. However, the accuracy requirements would limit time-step size and
since a large nonlinear algebraic system of equations has to be solved at each time-step, implicit
methods may not be efficient. Here, we apply the explicit third-order large stability domain Runge-
Kutta method, developed in [16, 17]. This method belongs to a class of Runge-Kutta-Chebyshev
methods (see, e.g., [12, 21, 23–25]), which allow one to use much larger time-steps compared with
the standard explicit Runge-Kutta methods. In practice, when the problem is not too stiff as in the
case of ODEs arising in finite-difference approximation of parabolic PDEs, these methods preserve
all the advantages of explicit methods and are typically more efficient than implicit methods (see
[2, 3, 16, 21, 25] for details). We have implemented the code DUMKA3 [17], which incorporates
the embedded formulas that permit an efficient stepsize control. The efficiency of DUMKA3 is
further improved when the user provides an upper bound on the time-step stability restriction for
the forward Euler method. We therefore establish such bounds in the following three theorems.

Theorem 2.4 Assume that the system of ODEs (2.3), (2.4) is numerically integrated by the
forward Euler method from time t to t+ ∆tFE and that the following CFL condition holds:

∆tFE ≤
1

am
· 1

max
j

(ux)2
j

, a :=
m∑

p=−m

α2
p, (2.13)

where αp are the coefficients in (2.2) and (ux)j are given by (2.4). Then

‖u(t+ ∆tFE)‖L2 ≤ ‖u(t)‖L2 , (2.14)

where ‖u(t)‖L2 :=
√∑

j u
2
j(t)∆x.
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Theorem 2.5 Assume that the system of ODEs (2.7)–(2.9) is numerically integrated by the
forward Euler method from time t to t+ ∆tFE and that the following CFL condition holds:

∆tFE ≤
1

4m ·max(a, b)
· 1

max
j,k
{(ux)2

j,k, (uy)
2
j,k}

, a :=
m∑

p=−m

α2
p, b :=

m∑
p=−m

β2
p , (2.15)

where αp and βp are the coefficients in (2.6) and (ux)j,k and (uy)j,k are given by (2.9). Then

‖u(t+ ∆tFE)‖L2 ≤ ‖u(t)‖L2 , (2.16)

where ‖u(t)‖L2 :=
√∑

j,k u
2
j,k(t)∆x∆y.

Theorem 2.6 Assume that the system of ODEs (2.11), (2.12) is numerically integrated by the
forward Euler method from time t to t+ ∆tFE and that the following CFL condition holds:

∆tFE ≤
1

6m ·max(a, b)
· 1

max
j,k

u2
j,k

. (2.17)

Then,
‖u(t+ ∆tFE)‖L2 ≤ ‖u(t)‖L2 , (2.18)

with the same a and b as in Theorem 2.5.

Proofs of Theorem 2.4, Theorem 2.5 and Theorem 2.6 are provided in Appendix A.

Remark 2.3 We would like to emphasize that the code DUMKA3 automatically selects time-
steps so that in average the selected time-steps ∆tODE are much larger than ∆tFE.

3 Pseudo-Spectral Methods for (1.8)

In this section, we describe the (exact) pseudo-spectral solver for equation (1.8) and its 1-D version.

3.1 One-Dimensional Pseudo-Spectral Method

We consider the 1-D equation,

ut = −uxx − δuxxxx, x ∈ [0, L], t ∈ (0, T ], (3.1)

subject to the L-periodic boundary conditions.
We first use the FFT algorithm to compute the discrete Fourier coefficients {ûm(t)} from the

available point values {uj(t)}. This gives us the following spectral approximation of u on [0, L]:

u(x, t) ≈
∑
m

ûm(t)ei
2πmx
L . (3.2)

We then substitute (3.2) into (3.1) and obtain very simple linear ODEs for the discrete Fourier
coefficients of u,

d

dt
ûm(t) = (s− δs2)ûm(t), s =

(2πm

L

)2

,

which can be solved exactly:
ûm(t+ ∆t) = e(s−δs2)∆t ûm(t).

Finally, we use the inverse FFT algorithm to obtain the point values of the solution at the new
time level, {uj(t+ ∆t)}, out of the set of the discrete Fourier coefficients {ûm(t+ ∆t)}.
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3.2 Two-Dimensional Pseudo-Spectral Method

We now solve the 2-D equation (1.8),

ut = −(uxx + uyy)− δ(uxxxx + 2uxxyy + uyyyy),

on a rectangular domain Ω = [0, Lx] × [0, Ly] with the Lx- and Ly-periodic boundary conditions
in the x- and y-directions, respectively.

Similar to the 1-D case, we apply the FFT algorithm and obtain very simple linear ODEs for
the discrete Fourier coefficients of u,

d

dt
ûm,`(t) = (s− δs2)ûm,`(t), s =

(2πm

Lx

)2

+
(2π`

Ly

)2

. (3.3)

The exact solution of (3.3) is

ûm,`(t+ ∆t) = e(s−δs2)∆t ûm,`(t).

Finally, we apply the inverse FFT algorithm to obtain the point values of the solution at the new
time level, {uj,k(t+ ∆t)}, out of the set of the discrete Fourier coefficients {ûm,`(t+ ∆t)}.

4 Adaptive Splitting Time-Stepping Strategy

For practical applications, the efficiency of splitting methods hinges on its ability to use (relatively)
large time-steps (see, e.g., [5–9]). Our numerical experiments indicate that taking ∆t = δ/100
for the MBE equations and ∆t = δ/10 for the CH equation leads to accurate results. However,
one expects such a small ∆t is only required when the phase transition occurs and the solution
changes quite rapidly. At other times and especially the solution is close to its steady state, it
might be safe to use much larger ∆t. We therefore explore an adaptive splitting time-stepping
strategy: We would like to use small ∆t only whenever necessary.

To design an adaptive approach, we need to measure the solution variation. This can be done
using either the energy or solution roughness at time t, which is defined by

w(t) =

√√√√ 1

|Ω|

∫
Ω

[u(x, y, t)− ū(t)]2 dxdy, (4.1)

where

ū(t) =
1

|Ω|

∫
Ω

u(x, y, t) dxdy (4.2)

is the mean height at time t.
We adjust the size of splitting steps using the following roughness-dependent monitor function

introduced in [19]

∆t = max

(
∆tmin,

∆tmax√
1 + α|w′(t)|2

)
, α = Const. (4.3)

Here, ∆tmin is the smallest splitting step, which is taken to be either ∆tmin = δ/100 (for the MBE
equations) or ∆tmin = δ/10 (for the CH equation), ∆tmax is the largest allowed splitting step, and
α is positively adaption constant.
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Notice that large |w′(t)| will lead to small splitting step, which corresponds to the case of rapid
change of roughness or quick motion of the structural transition from one stage to the next one.
Similarly, small |w′(t)| yields large splitting step, which corresponds to the slow MBE growth or
slow phase interface motion.

Remark 4.1 A similar adaptive strategy can be designed by replacing w(t) with E(t). However,
our numerical experiments indicate the roughness-based strategy is more robust than the energy-
based one.

Our numerical experiments reported in §5 suggest that the adaptive splitting time-stepping
strategy can lead to a substantial reduction of the CPU time without significantly affecting the
accuracy of the computed solution. The data on the CPU time reduction achieved in different
numerical examples are presented in Table 4.1: In average, the adaptive method is about 3–6
times more efficient.

Example Number of grid points Final time Splitting step CPU time

1 256 240
constant 3.2805

adaptive 0.9659

2 256× 256 30
constant 4601.9

adaptive 838.9

3 512× 512 80000
constant 223370

adaptive 38775

4 128× 128 20
constant 504.09

adaptive 125.86

Table 4.1: CPU times for Examples 1–4 in §5.

5 Numerical Examples

In this section, we illustrate the performance of our fast and stable explicit operator splitting
methods on several 1-D and 2-D examples. When solving equation (1.7) and (1.11), we use the
fourth-order finite-difference schemes developed in §2 (in Example 5, we also use the sixth-order
scheme). Both constant and adaptive splitting steps are employed to obtain numerical solutions.
The adaptive splitting step is determined by (4.3) with the values ∆tmin, ∆tmax and α being
specified in each example.

To verify the rates of convergence of the proposed methods, we measure the difference between
the solutions computed at the same time level on two consecutive grids using the L1- and L∞-
errors, which are defined as follows:

||uN,∆t1 − uN/2,∆t2||1 :=
LxLy
N2

N∑
j=1

N∑
k=1

|uN,∆t1j,k − uN/2,∆t2j,k |,

and
||uN,∆t1 − uN/2,∆t2||∞ := max

1≤j,k≤N
|uN,∆t1j,k − uN/2,∆t2j,k |,
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where uN,∆t := {uNj,k} is a numerical solution obtained with a uniform N ×N grid and a constant
splitting step ∆t at some time level. Then, to measure the experimental convergence rates, we
use the ratio of errors:

r = log2

(
||uN/2,∆t2 − uN/4,∆t3 ||
||uN,∆t1 − uN/2,∆t2||

)
,

where we either take ∆t1 = ∆t, ∆t2 = 2∆t and ∆t3 = 4∆t or fix the splitting step and set
∆t1 = ∆t2 = ∆t3 = ∆t.

In the 1-D case, the rates are computed similarly.

Example 1—One-Dimensional Morphological Instability. We first consider the 1-D MBE
equation

ut = (u3
x)x − uxx − uxxxx,

subject to the initial condition

u(x, 0) = 0.1
(

sin
πx

2
+ sin

2πx

3
+ sin πx

)
, x ∈ [0, 12].

This example was studied in [13] to observe the morphological instability due to the nonlinear
interaction.

We compute the solution until the final time t = 240 with a constant splitting step ∆t = 10−1

on the uniform grid with N = 256. Figure 5.1 shows a sequence of snapshots of the surface height
at different times. As one can observe, the initial oscillation is damped by t = 1. After a relatively
long period of “buffering” time, a new larger scale structure emerges, then it increases and finally
the steady state is reached by t = 240.

Compared to the results reported in [13], our steady state is in a good agreement with the
one obtained there, while the “buffering” time evolution is very different. We therefore reduce
the splitting step by a factor of 10 and repeat the computation with ∆t = 10−2. The obtained
solution, plotted in Figure 5.2 (solid line), now matches the results in [13]: The structure emerges
earlier and the steady state is reached by t = 60.

The time evolution process can be monitored by plotting the energy (1.5) and roughness (4.1),
see Figure 5.3. One can observe that initially both energy and roughness decay rapidly. However,
after a relatively long period of time, roughness starts to grow, which is exactly the morphological
instability in the rough-smooth-rough pattern. Notice that the flat tail in Figure 5.3(b) and (d)
indicates that the steady state is reached much later when ∆t = 10−1 is used.

To improve the efficiency of the proposed fast and stable explicit operator splitting methods,
we implement the adaptive strategy described in §4. Here, we use ∆tmin = 10−2, ∆tmax = 10−1

and α = 103. The obtained solution is shown in Figure 5.2 (dashed line), and the corresponding
energy and roughness are plotted in Figure 5.3 (dashed line). As one can see, the adaptive solution
practically coincides with the solution computed with ∆t = 10−2. It is instructive to check what
splitting steps are used by the adaptive algorithm. To this end, we plot the splitting steps as
a function of time in Figure 5.4. As one can see, the splitting steps are smaller than 10−1 only
initially and then at the intermediate times. We also compare the CPU times of the adaptive and
constant (with ∆t = 10−2) splitting step computations. The results, shown in the first row of
Table 4.1, indicate that the CPU time for the adaptive method is about four times smaller than
the one for the constant splitting step.
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Figure 5.1: Example 1: u computed with ∆t = 10−1.

Finally, we test the accuracy of the proposed fast and stable explicit splitting methods. To
this end, we perform the mesh-refinement study and measure the L1- and L∞-errors. The results
reported in Table 5.1 indicate that the experimental convergence rate is close to the expected
second-order one. We next fix the splitting step to be very small (∆t = 10−3) so that the splitting
errors do not dominate and perform another mesh-refinement study. The results reported in
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Figure 5.2: Example 1: u computed with ∆t = 10−2 (solid line) and adaptive splitting time-stepping
with ∆tmin = 10−2, ∆tmax = 10−1 and α = 103 (dashed line).

Table 5.2 show that in this regime, the experimental convergence rate is four, which is the order
of finite-difference scheme from §2.1.

N ∆t ||uN,∆t − uN/2,2∆t||1 Rate ||uN,∆t − uN/2,2∆t||∞ Rate

128 2e-2 3.95e-03 – 7.58e-04 –

256 1e-2 1.07e-03 1.89 2.45e-04 1.63

512 5e-3 2.73e-04 1.97 7.17e-05 1.78

1024 2.5e-3 6.84e-05 1.99 1.93e-05 1.89

Table 5.1: Example 1: L1- and L∞-errors and experimental convergence rates at t = 240.

N ∆t ||uN,∆t − uN/2,∆t||1 Rate ||uN,∆t − uN/2,∆t||∞ Rate

128 1e-3 8.06e-05 – 2.25e-05 –

256 1e-3 5.18e-06 3.96 1.44e-06 3.96

512 1e-3 3.27e-07 3.99 9.10e-08 3.99

1024 1e-3 2.02e-08 4.02 5.62e-09 4.02

Table 5.2: Example 1: L1- and L∞-errors and experimental convergence rates obtained with the fixed
small splitting step ∆t = 10−3 at t = 240.
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Figure 5.3: Example 1: (a) Energy evolution in a short time period; (b) Energy evolution in a long
time period; (c) Roughness development in a time period t ∈ [0, 40]; (d) Roughness development in
a long time period. ∆t = 10−1 (dashed dotted line), ∆t = 10−2 (solid line) and adaptive splitting
time-stepping with ∆tmin = 10−2, ∆tmax = 10−1 and α = 103 (dashed line).
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Figure 5.4: Example 1: Splitting step evolution. ∆t = 10−2 (solid line) and adaptive splitting time-
stepping with ∆tmin = 10−2, ∆tmax = 10−1 and α = 103 (dashed line).

Example 2—Two-Dimensional Morphological Instability. Next, we consider the 2-D
MBE equation (1.3) with δ = 0.1 subject to the following initial condition:

u(x, y, 0) = 0.1(sin 3x sin 2y + sin 5x sin 5y), (x, y) ∈ [0, 2π]× [0, 2π].

This example was studied in [13, 26] to observe the morphological instability due to the nonlinear
interaction.

We first compute the solution on a 256×256 uniform grid with the constant splitting step ∆t =
10−3. Figure 5.5 shows the height profiles at times t = 0, 0.5, 2.5, 5.5, 8 and 30. The corresponding
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gradients |∇u| are plotted in Figure 5.6. In Figure 5.7, we demonstrate the experimental energy
decay and roughness development, which indicate that the solution reaches a steady state at
around t = 12. The obtained results are in good agreement with those reported in [13].
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Figure 5.5: Example 2: u computed with ∆t = 10−3.

We then carry out the adaptive strategy to increase the efficiency of the proposed methods.
Here, we choose ∆tmin = 10−3, ∆tmax = 10−2 and α = 103. The corresponding energy and
roughness curves in Figure 5.7 are practically indistinguishable from those obtained using the
small constant splitting step ∆t = 10−3. Splitting steps evolution, plotted in Figure 5.8, shows
that ∆t ≈ ∆tmax when the solution approaches its steady state. This leads to a substantial
decrease in CPU time, see the second row in Table 4.1.

Finally, we perform the mesh-refinement study and verify that the experimental convergence
rates for the proposed fast and stable explicit operator splitting methods are close to the expected
second-order one, see Table 5.3.
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Figure 5.6: Example 2: |∇u| computed with ∆t = 10−3.

N ∆t ||uN,∆t − uN/2,2∆t||1 Rate ||uN,∆t − uN/2,2∆t||∞ Rate

64 4e-3 3.36e-03 – 6.01e-04 –

128 2e-3 9.09e-04 1.88 1.55e-04 1.96

256 1e-3 2.48e-04 1.87 4.96e-05 1.64

512 5e-4 6.52e-05 1.93 1.55e-05 1.68

Table 5.3: Example 2: L1- and L∞-errors and experimental convergence rates at t = 30.

Example 3—Coarsening Dynamics. In this example, we study the 2-D MBE equation (1.3)
with δ = 1 subject to initial data, obtained by assigning a uniformly distributed random number
in the range [−0.001, 0.001] to each grid point value of u(x, y, 0). We use a 512× 512 uniform grid
on the computational domain Ω = [0, 1000]× [0, 1000].
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Figure 5.7: Example 2: (a) Energy evolution in a short time period; (b) Energy evolution in a long time
period; (c) Roughness development in a short time period; (d) Roughness development in a long time
period. ∆t = 10−3 (solid line) and adaptive splitting time-stepping with ∆tmin = 10−3, ∆tmax = 10−2

and α = 103 (dashed line).
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Figure 5.8: Example 2: Splitting step evolution. ∆t = 10−3 (solid line) and adaptive splitting time-
stepping with ∆tmin = 10−3, ∆tmax = 10−2 and α = 103 (dashed line).

Figure 5.9 shows the contour lines of the free energy function

Ffree :=
1

4
(|∇u| − 1)2 +

δ

2
|∆u|2

at t = 40, 000 and 80, 000 computed using the constant splitting step ∆t = 10−1.
As one can see, the free energy is concentrated on and thus could be used to identify the edges

of the pyramidal structures; the pyramid edges form a random network over the surface, which
results from the isotropic nature of the surface symmetry; the cells of the network grow in time
via a coarsening process.
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Figure 5.9: Example 3: Contour plots of Ffree computed with ∆t = 10−1.

In Figure 5.10, we present the power laws of the growth of the interface height

ũ(t) =

(
1

|Ω|

∫
Ω

u2(x, y, t) dxdy

) 1
2

,

and the evolution of the mean height ū(t) defined in (4.2). As one can see in Figure 5.10 (left),
the height of the pyramids grows in time as a power law Ctn with the exponent n close to 1/3.
Figure 5.10 (right) shows that the difference ū(t) − ū(0) remains practically zero at all times,
which demonstrates mass conservation. The energy (1.5), normalized by the domain size, and
the roughness (4.1) are plotted in Figure 5.11. The obtained results match the experimental and
numerical ones reported in [18, 26].
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Figure 5.10: Example 3: The log-log scale plot of the interface growth (left) and the evolution of the
mean height (right) with ∆t = 10−1.

When the adaptive technique with ∆tmin = 10−1, ∆tmax = 5 and α = 1 is implemented,
the obtained results are very similar. As one can see in Figure 5.11, the splitting step increases
to ∆tmax very soon and then is always selected close to ∆tmax due to the slow variation of the
roughness. This leads to substantial CPU time usage saving, see the third row in Table 4.1.
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Figure 5.11: Example 3: (a) Energy evolution; (b) Roughness development; (c) Splitting step evolution.
∆t = 10−1 (solid line) and adaptive splitting time-stepping with ∆tmin = 10−1, ∆tmax = 5 and α = 1
(dashed line).

Remark 5.1 We would like to stress that in this example, the energy transition does not occur,
and the solution has a smooth variation. It is therefore safe to take a relatively small value α = 1
and ∆tmin = 10−1, which is much larger than δ/100 = 10−2.

Example 4—Non-Mean-Zero Initial Data. In this example, taken from [10], we consider
the 2-D CH equation (1.4) with δ = 0.01 subject to the following non-mean-zero initial condition:

u(x, y, 0) = 0.05 sinx sin y + 0.001, (x, y) ∈ [0, 2π]× [0, 2π].

We first compute the solution on a 128 × 128 uniform grid with the constant splitting step
∆t = 10−3. The solution computed at times t = 1, 2, 5 and 20 is shown in Figure 5.12 (left). The
experimental energy decay and roughness development curves, shown in Figure 5.13, indicate that
the solution reaches a steady state at about t = 9. These results are in good agreement with those
reported in [10].

We then compute the solution using the adaptive strategy with ∆tmin = 10−3, ∆tmax = 10−2

and α = 102. The results are plotted in Figure 5.12 (right). As one can see, the solution dynamics
can be captured correctly when the adaptive strategy is employed. The corresponding energy and
roughness curves shown in Figure 5.13 have some discrepancy with those obtained using the small
constant splitting step ∆t−3, though the adaptive and non-adaptive solutions are quite close and
the resulting steady states seem to be the same. Splitting steps evolution, also plotted in Figure
5.13, shows that ∆t ≈ ∆tmax when the solution approaches its steady state, which leads to a
substantial saving in CPU time, see the fourth row in Table 4.1.

Finally, we perform the mesh-refinement study and verify that the experimental convergence
rates for the proposed fast and stable explicit operator splitting methods are close to the expected
second-order one, see Table 5.4.

Example 5—Mean-Zero Initial Data. In this example, also taken from [10], we consider the
2-D CH equation with δ = 0.01 subject to the following mean-zero initial condition:

u(x, y, 0) = 0.05 sinx sin y, (x, y) ∈ [0, 2π]× [0, 2π].

We first use a uniform 128 × 128 grid with a constant splitting step ∆t = 10−3 and compute
the solution until a large final time t = 100. The obtained results are shown in Figure 5.14 (left
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Figure 5.12: Example 4: u computed with ∆t = 10−3 (left column) and adaptive splitting time-
stepping with ∆tmin = 10−3, ∆tmax = 10−2 and α = 102 (right column).

column). Even though the solution at a small time t = 2 is similar to the corresponding solution
reported in [27], later on our solution bifurcates and seems to converge to a different steady
state. We therefore perform a thorough comparative study by taking a smaller ∆t = 10−4 and
finer 256× 256 grid. The results, plotted in Figure 5.14, clearly indicate that different numerical
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Figure 5.13: Example 4: (a) Energy evolution; (b) Roughness development; (c) Splitting step evolution.
∆t = 10−3 (solid line) and adaptive splitting time-stepping with ∆tmin = 10−3, ∆tmax = 10−2 and
α = 102 (dashed line).

N ∆t ||uN,∆t − uN/2,2∆t||1 Rate ||uN,∆t − uN/2,2∆t||∞ Rate

64 2e-3 1.61e-00 – 3.01e-01 –

128 1e-3 1.37e-01 3.55 2.64e-02 3.51

256 5e-4 3.44e-02 2.00 5.79e-03 2.19

512 2.5e-4 1.12e-02 1.62 1.72e-03 1.75

Table 5.4: Example 4: L1- and L∞-errors and experimental convergence rates at t = 20.

solutions may converge to different steady states. We then use the sixth-order semi-discrete
finite-difference scheme for equation (1.11) instead of the fourth-order one and discover even more
different steady-state patterns, see Figure 5.15.

Our results suggest that the mean-zero solutions of the 2-D CH equation (1.4) may be unstable.
Our conjecture is supported by recent analytical results on unstable equilibria in the 1-D CH
equation, see [20].

Appendix A: Proofs of Theorems 2.4–2.6

Here, we provide proofs of Theorem 2.4–2.6. We denote tnew := t+∆tFE. We also use the following
notations: unew

j := u(xj, t+ ∆tFE) (in Theorem 2.4) and unew
j,k := u(xj, yk, t+ ∆tFE) (in Theorems

2.5 and 2.6).

A.1 Proof of Theorem 2.4 (1-D MBE Equation)

Applying the forward Euler method to discretize (2.3) results in

unew
j − uj

∆t
= Fj. (A.1)
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Figure 5.14: Example 5: u computed with a 128×128 grid, ∆t = 10−3 (first column); 128×128 grid,
∆t = 10−4 (second column); 256 × 256 grid, ∆t = 10−3 (third column); 256 × 256 grid, ∆t = 10−4

(fourth column).
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Figure 5.15: Example 5: Same as in Figure 5.14, but using the sixth-order scheme for (1.11).

We first multiply both sides of equation (A.1) by (unew
j + uj)/2, replace unew

j on the right using
(A.1) and sum over the entire domain to obtain∑

j

(unew
j )2 − u2

j

2∆t
=
∑
j

Fjuj +
∆t

2

∑
j

F 2
j . (A.2)
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We then rewrite the first term on the right-hand side (RHS) of (A.2) as follows:

∑
j

Fjuj
(2.3)
=
∑
j

m∑
p=−m

αpHj+puj =
m∑

p=−m

αp
∑
j

Hj+puj =
m∑

p=−m

αp
∑
j

Hjuj−p

=
∑
j

Hj

m∑
p=−m

αpuj−p =
∑
j

Hj

m∑
p=−m

α−puj+p
(2.5)
=
∑
j

Hj

m∑
p=−m

(−αp)uj+p
(2.4)
= −

∑
j

(ux)
4
j ,

and estimate the second term on the RHS of (A.2) using the Cauchy-Schwarz inequality:

∑
j

F 2
j

(2.3)
=
∑
j

(
m∑

p=−m

αpHj+p

)2

≤ 2m
∑
j

m∑
p=−m

α2
pH

2
j+p

= 2m
m∑

p=−m

α2
p

∑
j

H2
j+p = 2am

∑
j

H2
j

(2.4)
= 2am

∑
j

(ux)
6
j .

Therefore, the left-hand side (LHS) of equation (A.2) can be bounded by

∑
j

(unew
j )2 − u2

j

2∆t
≤ −

∑
j

(ux)
4
j + am∆t

∑
j

(ux)
6
j ≤

[
am∆tmax

j
(ux)

2
j − 1

]∑
j

(ux)
4
j ,

which is nonpositive provided the time-step is bounded by (2.13). �

A.2 Proof of Theorem 2.5 (2-D MBE Equation)

Applying the forward Euler method to discretize (2.7) results in

unew
j,k − uj,k

∆t
= Fj,k. (A.3)

We first multiply both sides of equation (A.3) by (unew
j,k + uj,k)/2, replace unew

j,k on the right using
(A.3) and sum over the entire domain to obtain

∑
j,k

(unew
j,k )2 − u2

j,k

2∆t
=
∑
j,k

Fj,kuj,k +
∆t

2

∑
j,k

F 2
j,k. (A.4)

We then use (2.7)–(2.9) to rewrite the first term on the RHS of (A.4) as follows:∑
j,k

Fj,kuj,k = −
∑
j,k

[
(ux)

4
j,k + (ux)

2
j,k(uy)

2
j,k

]
−
∑
j,k

[
(uy)

4
j,k + (uy)

2
j,k(ux)

2
j,k

]
,

and use (2.7), (2.8) and the Cauchy-Schwarz inequality to estimate the second term on the RHS
of (A.4): ∑

j,k

F 2
j,k ≤ 8am

∑
j,k

[
(ux)

6
j,k + (ux)

2
j,k(uy)

4
j,k

]
+ 8bm

∑
j,k

[
(uy)

6
j,k + (uy)

2
j,k(ux)

4
j,k

]
.
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Therefore, the LHS of equation (A.4) can be bounded by∑
j,k

(unew
j,k )2 − u2

j,k

2∆t
≤
[
4am∆tmax

j,k
(ux)

2
j,k − 1

]∑
j,k

(ux)
4
j,k +

[
4bm∆tmax

j,k
(uy)

2
j,k − 1

]∑
j,k

(uy)
4
j,k

+

[
4am∆tmax

j,k
(uy)

2
j,k − 1

]∑
j,k

(ux)
2
j,k(uy)

2
j,k +

[
4bm∆tmax

j,k
(ux)

2
j,k − 1

]∑
j,k

(uy)
2
j,k(ux)

2
j,k,

which is nonpositive provided the time-step is bounded by (2.15). �

A.3 Proof of Theorem 2.6 (2-D CH Equation)

Applying the forward Euler method to discretize (2.11) results in

unew
j,k − uj,k

∆t
= Fj,k. (A.5)

Once again, we multiply both sides of equation (A.5) by (unew
j,k + uj,k)/2, replace unew

j,k on the right
using (A.5) and sum over the entire domain to obtain∑

j,k

(unew
j,k )2 − u2

j,k

2∆t
=
∑
j,k

Fj,kuj,k +
∆t

2

∑
j,k

F 2
j,k. (A.6)

We now notice that within the accuracy of the scheme

Hx
j,k = 3u2

j,k(ux)j,k and Hy
j,k = 3u2

j,k(uy)j,k. (A.7)

We then use (A.7), (2.10) and (2.11) to rewrite the first term on the RHS of (A.6) as follows:∑
j,k

Fj,kuj,k = −3
∑
j,k

u2
j,k(ux)

2
j,k − 3

∑
j,k

u2
j,k(uy)

2
j,k,

and use (A.7), (2.11) and the Cauchy-Schwarz inequality to estimate the second term on the RHS
of (A.6): ∑

j,k

F 2
j,k ≤ 36am

∑
j,k

u4
j,k(ux)

2
j,k + 36bm

∑
j,k

u4
j,k(uy)

2
j,k.

Therefore, the LHS of equation (A.6) can be bounded by∑
j,k

(unew
j,k )2 − u2

j,k

2∆t
≤ 3

[
6am∆tmax

j,k
(u2

j,k)− 1

]∑
j,k

u2
j,k(ux)

2
j,k

+ 3

[
6bm∆tmax

j,k
(u2

j,k)− 1

]∑
j,k

u2
j,k(uy)

2
j,k,

which is nonnegative provided the time-step is bounded by (2.17). �
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