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Abstract. Two-layer shallow water equations describe flows that consist of two lay-
ers of inviscid fluid of di↵erent (constant) densities flowing over bottom topography.
Unlike the single-layer shallow water system, the two-layer one is only conditionally
hyperbolic: the system loses its hyperbolicity because of the momentum exchange
terms between the layers and as a result its solutions may develop instabilities. We
study a three-layer approximation of the two-layer shallow water equations by intro-
ducing an intermediate layer of a small depth. We examine the hyperbolicity range of
the three-layer model and demonstrate that while it still may lose hyperbolicity, the
three-layer approximation may improve stability properties of the two-layer shallow
water system.

Keywords: two-layer shallow water equations, central-upwind scheme, well-balanced

scheme, conditional hyperbolicity.
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1 Introduction

Shallow water models are widely used as a mathematical framework to study
water flows in rivers and coastal areas as well as to investigate a variety of
phenomena in atmospheric sciences and oceanography. The basic feature of
shallow water flows is that the vertical e↵ect can be neglected compared with
the horizontal one with a good approximation. This allows a considerable
simplification in the mathematical formulation by replacing the vertical mo-
mentum equation by the hydrostatic pressure distribution. As a result, such
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Figure 1. Two-layer (left) and three-layer (right) shallow water setup.

flows are usually described by the shallow water equations. The simplest, yet
commonly used, shallow water model is the Saint-Venant system [12].

Layered shallow water equations describe the behaviour of several super-
posed layers of inviscid fluid of di↵erent, constant densities flowing over bottom
topography, as illustrated in Fig. 1, and are derived by depth averaging the in-
compressible Navier–Stokes equations with the hydrostatic assumption within
each layer, see [7]. For instance, the following one-dimensional (1-D) two-layer
shallow water model describes a flow that consists of layers of heights h1 (up-
per layer) and h2 (lower layer) at position x at time t with the corresponding
constant densities ⇢1 < ⇢2, velocities u1 and u2, and discharges q1 := h1u1 and
q2 := h2u2:

8
>>>>>><

>>>>>>:

(h1)t + (q1)x = 0,

(q1)t +
⇣
h1u

2
1 +

g

2
h2
1

⌘

x

= �gh1Bx

� gh1(h2)x,

(h2)t + (q2)x = 0,

(q2)t +
⇣
h2u

2
2 +

g

2
h2
2

⌘

x

= �gh2Bx

� grh2(h1)x.

(1.1)

Here, B(x) is a function describing the bottom topography, r = ⇢1

⇢2
is the

ratio of the densities, which is typically r ⇠ 1, and g is the gravitational
constant.

The system (1.1) consists of four equations: the first and third of which
indicate the conservation of mass, and the second and fourth equations state
the momentum balance for each layer. One of the key challenges in solving the
system (1.1) numerically is that it is only conditionally hyperbolic which may
lead to significant instabilities. Specifically speaking, the hyperbolic region
of the system (1.1) mainly depends on the di↵erence between the velocities
of the two layers: when |u1 � u2| is large, the system is not hyperbolic and
one may expect appearance of Kelvin–Helmholtz-type instabilities. Another
numerical challenge is related to the presence of nonconservative momentum
exchange terms on the right-hand side (RHS) of (1.1). Even though the analytic
theory of nonconservative hyperbolic system has been developed (see, e.g., [11]),
designing a numerical scheme whose solution is guaranteed to converge to the
unique physically relevant solution is still an open problem. A theoretical
framework for designing converging numerical method was presented in [26],
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Three-Layer Approximation of Two-Layer Shallow Water Equations 677

and a class of path-conservative schemes was developed afterwards in [8, 9,
24]. However, as it has been recently demonstrated in [2], convergence of
path-conservative schemes has still not been rigorously established. In [19],
an alternative approach was proposed. The system (1.1) was rewritten in a
di↵erent form, which is equivalent to (1.1) for smooth solutions:

8
>>>>>>>>>>><

>>>>>>>>>>>:

(h1)t + (q1)x = 0,

(q1)t +

✓
q21
h1

+ g"h1

◆

x

= g"(h1)x,

w
t

+ (q2)x = 0,

(q2)t +

✓
q22

w �B
+

g

2
w2 � g

2
rh2

1 � gB(rh1 + w)

◆

x

= �g(rh1 + w)B
x

� gr"(h1)x,

(1.2)

where w := h2+B and " := h1+h2+B. The main advantage of the rewritten
system (1.2) over the original one (1.1) is that the coe�cients of the noncon-
servative product terms on the RHS of (1.2) are now proportional to the water
surface variable ", which is typically small in all realistic settings provided that
the reference level in the vertical direction z is selected to be 0 (see Fig. 1). This
is obviously true in all of the oceanographic applications, in which the magni-
tude of surface waves is much smaller than the depth of the ocean. In [19], the
system (1.2) was numerically solved using a well-balanced, positivity-preserving
central-upwind scheme, which was originally developed for hyperbolic systems
of conservation laws [16,17,20,21] and then extended and applied to hyperbolic
systems of balance laws arising in modelling shallow water flows, see [15,18,19].
For several other numerical methods for multilayer shallow water equations we
refer the reader, e.g., to [1, 3, 4, 5].

One of the reasons the system (1.1) (and also its rewritten version (1.2)) is
only conditionally hyperbolic is that it is derived using a non-mixing assump-
tion. The loss of hyperbolicity triggers Kelvin–Helmholtz-type instabilities.
Several stabilization approaches have been recently proposed. For example,
in [10], interlayer friction terms were added to the two-layer shallow water
system (1.1). In this paper, we study a three-layer approximation of the two-
layer system (1.1), which is obtained by introducing an intermediate layer of a
(small) depth h

m

. The new layer is expected to contain all possible turbulence
and mixing without substantially a↵ecting the depth and horizontal velocities
of the other layers. This idea has been originally presented in [6, 13] where
the third layer was adaptively introduced in nonhyperbolic regions. However,
the results obtained in [6, 13] seem to be inconclusive since the hyperbolicity
was gained only when the width of the intermediate layer was very large. Our
main objective is to study to what extent having an additional, “bu↵er” layer
would help to regain hyperbolicity in cases it is lost. To this extent, we test a
simpler (than in [6, 13]) strategy of adding a “bu↵er” layer at the initial time
moment and then following its evolution in time. (In a more sophisticated
adaptive procedure proposed in [6,13], the width of the intermediate layer was
modified dynamically to make sure that a meaningful “bu↵er” zone is always
present between the upper and lower layers.) Although the three-layer system

Math. Model. Anal., 18(5):675–693, 2013.
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678 A. Chertock, A. Kurganov, Z. Qu and T. Wu

may still lose hyperbolicity as it is demonstrated in Section 5 below, we show
that the proposed three-layer approximation may improve stability properties
of the original two-layer shallow water system. At the same time, the loss of
hyperbolicity seems to be a generic feature of the studied three-layer system
even though its hyperbolicity range may be much larger than the one of the
corresponding two-layer system, especially when the width of the “bu↵er” layer
is large (in the latter case, however, one cannot claim that the intermediate
layer is indeed a “bu↵er” one). As we demonstrate in our numerical experi-
ments reported in Section 4, even if having a “bu↵er” layer does not completely
remove instabilities, the oscillations become much smaller. This suggests that
the three-layer shallow water system may be viewed as an improved version of
its two-layer counterpart.

The paper is organized as follows. In Section 2, we present the three-layer
approximation of the two-layer shallow water system and discuss the strategy
for choosing the intermediate layer. In Section 3, we derive the central-upwind
scheme for the three-layer system. Finally, Sections 4 and 5 contain numerical
examples and analysis of the hyperbolicity properties of the three-layer shallow
water equations.

2 The Three-Layer Shallow Water System

In this section, we introduce a three-layer shallow water system by adding
an intermediate layer with the depth h

m

, velocity u
m

and discharge q
m

to
system (1.1). The three-layer system reads (for the form of a general multilayer
system we refer the reader to [3]):

8
>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:

(h1)t + (q1)x = 0,

(q1)t +
⇣
h1u

2
1 +

g

2
h2
1

⌘

x

= �gh1Bx

� gh1(hm

+ h2)x,

(h
m

)
t

+ (q
m

)
x

= 0,

(q
m

)
t

+
⇣
h
m

u2
m

+
g

2
h2
m

⌘

x

= �gh
m

B
x

� g
2r

1 + r
h
m

(h1)x � gh
m

(h2)x,

(h2)t + (q2)x = 0,

(q2)t +
⇣
h2u

2
2 +

g

2
h2
2

⌘

x

= �gh2Bx

� g
1 + r

2
h2(hm

)
x

� grh2(h1)x.

(2.1)

To apply the central-upwind scheme to this system, we follow the approach
in [19] and rewrite it as follows:

8
><

>:

(h1)t + (q1)x = 0,

(q1)t +

✓
q21
h1

+ g"h1

◆

x

= g"(h1)x,
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Three-Layer Approximation of Two-Layer Shallow Water Equations 679

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

(h
m

)
t

+ (q
m

)
x

= 0,

(q
m

)
t

+

✓
q2
m

h
m

+ g"h
m

◆

x

= g"(h
m

)
x

+ g
1� r

1 + r
h
m

(h1)x,

w
t

+ (q2)x = 0,

(q2)t +

✓
q22

w �B
+

g

2
w2 � g

2
rh2

1 � gB(rh1 + w)

� g
1 + r

2
h
m

(h1 +B)� g
1 + r

4
h2
m

◆

x

=�g

✓
rh1+w+

1+r

2
h
m

◆
B

x

� g"

✓
r(h1)x +

1 + r

2
(h

m

)
x

◆
� g

1� r

2
h
m

(h1)x.

(2.2)

As in the two-layer system (1.2), we have introduced the new equilibrium vari-
ables w := h2 + B and the water surface " := h1 + h

m

+ h2 + B. Notice that
the formula for " is now di↵erent from the one used in (1.2) since we have one
extra layer to be added. At the same time, we choose the origin of coordinate
system so that the reference surface level is 0 (see Fig. 1, right) as it was done
in the two-layer case schematically presented in Fig. 1, left.

The new system is preferable for numerical computation thanks to the fol-
lowing two reasons:

(i) Since the system (2.2) is written in terms of equilibrium variables, the
“lake at rest” steady-state solution takes a particularly nice form:

h1 ⌘ const, h
m

⌘ const, w ⌘ const, u1 ⌘ u2 ⌘ u
m

⌘ 0. (2.3)

Thus, the reformulated system makes it simpler to derive a well-balanced
scheme for the three-layer shallow water equations;

(ii) The coe�cients in the nonconservative terms on the RHS of (2.2) are
proportional to either " or (1 � r)h

m

. Note that " vanishes at the “lake at
rest” steady states, and, what is even more important, in most oceanographic
application remains very small. We also do not expect the depth of the in-
termediate layer to become large in any realistic scenario, which means that
(1 � r)h

m

is also expected to remain small. Smallness of " and (1 � r)h
m

is
expected to make the computed results to be practically independent of the
way the nonconservative terms are discretized as it was the case in [19].

Remark 1. Notice that if one sets h
m

= q
m

⌘ 0, the three-layer system (2.2)
reduces to the two-layer system (1.2).

3 Central-Upwind Scheme for the Three-Layer System

In this section, we describe a second-order well-balanced, positivity preserving
central-upwind scheme for the three-layer shallow water system (2.2), which we
rewrite in the vector form as

U
t

+ F(U, B)
x

= S(U, B) +N(U, B), (3.1)

Math. Model. Anal., 18(5):675–693, 2013.
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680 A. Chertock, A. Kurganov, Z. Qu and T. Wu

where the unknown function U, flux F, geometric source term S and noncon-
servative product term N are given by the following formulae:

U := (h1, q1, hm

, q
m

, w, q2)
T

,

F(U, B) :=

✓
q1,

q21
h1

+ g"h1, qm,
q2
m

h
m

+ g"h
m

, q2,
q22

w �B
+

g

2
w2 � g

2
rh2

1

�gB(rh1 + w)� g
1 + r

2
h
m

(h1 +B)� g
1 + r

4
h2
m

◆
T

,

S(U, B) :=

✓
0, 0, 0, 0, 0,�g

✓
rh1 + w +

1 + r

2
h
m

◆
B

x

◆
T

,

N(U, B) :=

✓
0, g"(h1)x, 0, g"(hm

)
x

+ g
1� r

1 + r
h
m

(h1)x,

0,�gr"(h1)x � g
1 + r

2

✓
"(h

m

)
x

+
1� r

1 + r
h
m

(h1)x

◆◆
T

.

(3.2)

We divide the computational domain into the cells C
j

= [x
j� 1

2
, x

j+ 1
2
], which

for simplicity are assumed to be uniform so that x
j+ 1

2
� x

j� 1
2

= �x and
x
j

= j�x for all j. We denote by

U
j

(t) =
1

�x

Z

Cj

U(x, t) dx

the computed cell averages of U, which we assume to be available at time t.
Using the notations introduced in (3.2), a semi-discretization of (3.1) can be
written as the following system of ODEs:

d

dt
U

j

(t) = �
H

j+ 1
2
(t)�H

j� 1
2
(t)

�x
+ S

j

(t) +N
j

(t), (3.3)

where H
j+ 1

2
are numerical fluxes, and S

j

and N
j

are discretizations of the
geometric source and nonconservative product terms, respectively:

S
j

(t)⇡ 1

�x

Z

Cj

S
�
U(x, t), B(x)

�
dx, N

j

(t)⇡ 1

�x

Z

Cj

N
�
U(x, t), B(x)

�
dx.

(3.4)
We use the central-upwind numerical fluxes derived in [17] (see also [15,18,19,
21]):

H
j+ 1

2
=

a+
j+ 1

2
F(U�

j+ 1
2
, B

j+ 1
2
)� a�

j+ 1
2
F(U+

j+ 1
2
, B

j+ 1
2
)

a+
j+ 1

2
� a�

j+ 1
2

+
a+
j+ 1

2
a�
j+ 1

2

a+
j+ 1

2
� a�

j+ 1
2

⇥
U+

j+ 1
2
�U�

j+ 1
2

⇤
. (3.5)

Here, B
j+ 1

2
:= B(x

j+ 1
2
) (or B

j+ 1
2
:= 1

2 (B(x
j+ 1

2
+ 0) + B(x

j+ 1
2
� 0)) in the

case the bottom topography function B is discontinuous at x = x
j+ 1

2
), U±

j+ 1
2
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Three-Layer Approximation of Two-Layer Shallow Water Equations 681

are the right/left point values at x = x
j+ 1

2
of the conservative piecewise linear

reconstruction

eU(x) := U
j

+ (U
x

)
j

(x� x
j

) , x 2 C
j

, (3.6)

so that

U�
j+ 1

2
:= eU(x

j+ 1
2
� 0) = U

j

+
�x

2
(U

x

)
j

,

U+
j+ 1

2
:= eU(x

j+ 1
2
+ 0) = U

j+1 �
�x

2
(U

x

)
j

.

(3.7)

The numerical derivatives (U
x

)
j

are at least first-order accurate approxima-
tions of U

x

(x
j

, t), computed using a nonlinear limiter needed to ensure a non-
oscillatory nature of the reconstruction (3.6). In our numerical computations,
we have used the generalized minmod limiter:

(U
x

)
j

= minmod

✓
✓
U

j

�U
j�1

�x
,
U

j+1 �U
j�1

2�x
, ✓

U
j+1 �U

j

�x

◆
, (3.8)

where the minmod function, defined as

minmod(z1, z2, . . .) :=

8
><

>:

min
j

{z
j

}, if z
j

> 0 8j,
max

j

{z
j

}, if z
j

< 0 8j,
0, otherwise,

is applied in a componentwise manner. The parameter ✓ 2 [1, 2] can be used to
control the amount of numerical viscosity present in the resulting scheme (see,
e.g., [22, 25] for more details). In our numerical experiments, we use ✓ = 1,
which corresponds to the most di↵usive minmod reconstruction.

The right- and left-sided local speeds a±
j+ 1

2
in (3.5) should be obtained as

in [16, 17, 19] using the smallest and largest eigenvalues of the system (2.1),
which can be written in the following quasilinear form:

0

BBBBBB@

h1

q1
h
m

q
m

h2

q2

1

CCCCCCA

t

+A

0

BBBBBB@

h1

q1
h
m

q
m

h2

q2

1

CCCCCCA

x

= �gB
x

0

BBBBBB@

0
h1

0
h
m

0
h2

1

CCCCCCA
, (3.9)

where

A =

0

BBBBBB@

0 1 0 0 0 0
gh1 � u2

1 2u1 gh1 0 gh1 0
0 0 0 1 0 0

2r
1+r

gh
m

0 gh
m

� u2
m

2u
m

gh
m

0
0 0 0 0 0 1

grh2 0 1+r

2 gh2 0 gh2 � u2
2 2u2

1

CCCCCCA
. (3.10)

Since no analytical expression of the eigenvalues of the matrix on the left-
hand side (LHS) of (3.10) is available, we follow the approach in [19] and

Math. Model. Anal., 18(5):675–693, 2013.
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682 A. Chertock, A. Kurganov, Z. Qu and T. Wu

overestimate the right/left-sided local speeds using upper/lower bounds on the
largest/smallest eigenvalues, respectively. To this end, we write the character-
istics equation in the form

�6 + c1�
5 + c2�

4 + c3�
3 + c4�

2 + c5�+ c6 = 0 (3.11)

with the coe�cients

c1=� 2(u1+u
m

+u2), c2= 1 +  
m

+  2 + 4(u1um

+ u1u2 + u
m

u2),

c3 = �2
�
 1(um

+ u2) +  
m

(u1 + u2) +  2(u1 + u
m

)� 4u1um

u2

�
,

c4 =  1 m

+  1 2 +  
m

 2 + 4
�
 1um

u2 +  
m

u1u2 +  2u1um

�

� g2
✓

2r

1 + r
h1hm

+ rh1h2 +
1 + r

2
h2hm

◆
,

c5 = 2


u1

✓
1 + r

2
g2h

m

h2 �  
m

 2

◆
+ u

m

�
rg2h1h2 �  1 2

�

+ u2

✓
2r

1 + r
g2h1hm

�  1 m

◆�
,

c6 =  1 m

 2 � g2
✓
1 + r

2
 1hm

h2 + r 
m

h1h2 +
2r

1 + r
 2h1hm

◆

� 2rg3h1hm

h2,

(3.12)

where we have used the following notations:

 1 := u2
1 � gh1,  

m

:= u2
m

� gh
m

,  2 := u2
2 � gh2.

We then establish the bounds by using the Lagrange theorem (see, e.g., [23])
as it was done in [19] for the two-layer shallow water system. According to the
Lagrange theorem, the largest nonnegative root is smaller than the sum of the
largest and the second largest numbers in the set { j

p
|c

j

| : j 2 Jmax}, where
Jmax is the set of the nonnegative coe�cients of the characteristic polynomial
(3.11), (3.12). Similarly, the smallest nonpositive root of this polynomial is
larger than the sum of the smallest and second smallest numbers in the set
{� j

p
|d

j

| : j 2 Jmin}, where Jmin is the set of the negative coe�cients of the
polynomial

�6 + d1�
5 + d2�

4 + d3�
3 + d4�

2 + d5�+ d6 = 0, d
j

= (�1)jc
j

8j.

If we denote the obtained upper bound by �max = �max(h1, hm

, h2, u1, um

, u2)
and the lower bound by �min = �min(h1, hm

, h2, u1, um

, u2), then the one-sided
local speeds can be estimated by

a+
j+ 1

2
= max

±

�
�max

�
(h1)

±
j+ 1

2
, (h

m

)±
j+ 1

2
, (h2)

±
j+ 1

2
, (u1)

±
j+ 1

2
, (u

m

)±
j+ 1

2
, (u2)

±
j+ 1

2

� 
,

a�
j+ 1

2
= min

±

�
�min

�
(h1)

±
j+ 1

2
, (h

m

)±
j+ 1

2
, (h2)

±
j+ 1

2
, (u1)

±
j+ 1

2
, (u

m

)±
j+ 1

2
, (u2)

±
j+ 1

2

� 
.

Remark 2. Note that the quantities U
j

, U±
j+ 1

2
, (U

x

)
j

and a±
j+ 1

2
in (3.5)–(3.8)

depend on t, but we simplify the notation by suppressing this dependence.
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Three-Layer Approximation of Two-Layer Shallow Water Equations 683

To ensure nonnegativity of h1, hm

and h2, we follow [18, 19] and correct
the reconstructed point values of w in each cell C

j

according to the following
algorithm:

If w�
j+ 1

2
< B

j+ 1
2
, then set w�

j+ 1
2
:= B

j+ 1
2
, w+

j� 1
2
:= 2w

j

�B
j+ 1

2
;

If w+
j� 1

2
< B

j� 1
2
, then set w+

j� 1
2
:= B

j� 1
2
, w�

j+ 1
2
:= 2w

j

�B
j� 1

2
.

To guarantee that the resulting scheme is well-balanced in the sense that
the “lake at rest” steady states (2.3) are preserved, we employ a well-balanced
quadrature (developed in [15], see also [18,19]) and approximate the cell aver-
ages of the geometric source term as:

S
j

(t) =

✓
0, 0, 0, 0, 0,�g

✓
r(h1)j + w

j

+
1 + r

2
(h

m

)
j

◆
·
B

j+ 1
2
�B

j� 1
2

�x

◆
T

.

Finally, we follow [19] and discretize the nonconservative product terms using
the same quadrature, which results in

N
(2)

j

(t) = g"
j

(h1)
�
j+ 1

2
� (h1)

+
j� 1

2

�x
,

N
(4)

j

(t) = g"
j

(h
m

)�
j+ 1

2
� (h

m

)+
j� 1

2

�x
+ g

1� r

1 + r
(h

m

)
j

(h1)
�
j+ 1

2
� (h1)

+
j� 1

2

�x
,

N
(6)

j

(t) = �rN
(2)

j

(t)� 1 + r

2
N

(4)

j

(t),

where N
(2)

j

, N
(4)

j

and N
(6)

j

are (nonzero) components of the vector N
j

(t)

in (3.4), that is, N
j

= (0, N
(2)

j

, 0, N
(4)

j

, 0, N
(6)

j

)T .

Remark 3. A fully discrete central-upwind scheme is obtained by applying an
appropriate ODE solver to (3.3). In our numerical experiments, we have used
the third-order strong stability preserving Runge–Kutta (SSP-RK) method
from [14].

Remark 4. As in [18,19], one can prove that provided the ODE system (3.3) is
discretized using an SSP ODE solver and the CFL condition is satisfied with
the CFL number equal to 1/2, the presented central-upwind scheme will be
positivity preserving in the following sense: If at a certain time level, (h1)j(t) �
0, (h

m

)
j

(t) � 0 and (h2)j(t) � 0 for all j, then at the next time level (h1)j(t+
�t) � 0, (h

m

)
j

(t+�t) � 0 and (h2)j(t+�t) � 0 as well. It should be observed

that as in [18,19] we set (h2)j := w
j

� eB(x
j

) (rather than w
j

�B(x
j

)), where
eB is a continuous piecewise linear approximant of the bottom topography B,
namely,

eB(x) = B
j� 1

2
+ (B

j+ 1
2
�B

j� 1
2
)
x� x

j� 1
2

�x
, x 2 C

j

.

Remark 5. Notice that if one sets (h
m

)
j

(0) = (q
m

)
j

(0) ⌘ 0, the presented
central-upwind scheme reduces to the central-upwind scheme from [19] for the
two-layer system (1.2).

Math. Model. Anal., 18(5):675–693, 2013.
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684 A. Chertock, A. Kurganov, Z. Qu and T. Wu

4 Numerical Examples

In this section, we apply the central-upwind scheme developed in Section 3 to
the three-layer shallow water system (2.2). The purpose of the presented nu-
merical experiments is to check whether (and to what extent) the three-layer
approximation (2.2) is capable of curing the instabilities that are typically de-
veloped in solutions of the two-layer system (1.2) in the nonhyperbolic regime.

In both examples below, we take the gravitational constant g = 10 and the
density ratio r = 0.98.

Example 1. We consider the three-layer shallow water system (2.2) subject to
the initial data:

h1(x, 0) =

(
1� 1

2
bh
m

, |x| � 1,

1� 1
4 sin(2⇡x)�

1
2
bh
m

, |x| < 1,

h2(x, 0) =

(
1� 1

2
bh
m

, |x| � 1,

1 + 1
4 sin(2⇡x)�

1
2
bh
m

, |x| < 1,

h
m

(x, 0) ⌘ bh
m

, u1(x, 0) ⌘ bu1, u2(x, 0) ⌘ bu2, u
m

(x, 0) ⌘ rbu1 + bu2

r + 1

with bu1 = 0.4 and bu1 = �0.4. We take B(x) ⌘ �2 and implement free
boundary conditions on the computational domain [�2, 2].

−2 −1 0 1 2

−2

−1.5

−1

−0.5

0
ε

w+h
m

w

B

Figure 2. Example 1: The initial setting for the three-layer system with bhm = 0.2.

The initial setting for h
m

= 0.2 is shown in Fig. 2. The simulations are run
on the uniform grid with �x = 1/200 until time t = 0.5.

We first compute the numerical solution of the two-layer system (bh
m

= 0).
The obtained results are presented in Figure 3. Using the hyperbolicity con-
dition (5.2), it is easy to check that in this case a large di↵erence in initial
velocities corresponds to the nonhyperbolic regime, which explains an oscilla-
tory behaviour of the computed solution.

We then introduce a thin intermediate layer by taking bh
m

= 0.05 and
compute the corresponding numerical solution of the three-layer system. As one
can see in Fig. 4, the computed solution is still oscillatory, but the magnitude of
oscillations is smaller than in the two-layer solution. When the initial thickness
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u
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u
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Figure 3. Example 1: Solution of the two-layer system (bhm = 0).
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0.6

0.8

u
1

u
m

u
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Figure 4. Example 1: Solution of the three-layer system with bhm = 0.05.

of the intermediate layer is increased to bh
m

= 0.1, the oscillations are further
reduced (see Fig. 5). Finally, when we take bh

m

= 0.2, the solution is practically
non-oscillatory (see Fig. 6).

We therefore conclude that in this example, the studied three-layer ap-
proximation of the two-layer shallow water system leads to stabilization of the
computed solution. However, one may argue that in the latter case of bh

m

= 0.2
the “bu↵er” layer is not too thin and thus the three-layer model may not be
considered as a minor modification of the original two-layer one.

−2 −1 0 1 2

−2

−1.5

−1

−0.5

0
ε

w+h
m

w

B

−2 −1 0 1 2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

u
1

u
m

u
2

Figure 5. Example 1: Solution of the three-layer system with bhm = 0.1.

Math. Model. Anal., 18(5):675–693, 2013.
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Figure 6. Example 1: Solution of the three-layer system with bhm = 0.2.

−3 −2 −1 0 1 2 3

−2

−1.5

−1

−0.5

0
ε

w+h
m

w

B

Figure 7. Example 2: The initial setting for the three-layer system with bhm = 0.2.

Example 2. We now consider the three-layer shallow water system (2.2) subject
to the following initial data:

h1(x, 0) = 1.2 + 0.15
�
tanh(5x)� tanh(5x+ 10)

�
� 0.5bh

m

,

h2(x, 0) = �h1(x, 0)�B(x)� bh
m

,

h
m

(x, 0) ⌘ bh
m

, u1(x, 0) ⌘ bu1, u2(x, 0) ⌘ bu2, u
m

(x, 0) ⌘ rbu1 + bu2

r + 1

with bu1 = 2.9 and bu1 = 2.1. We take

B(x) =

⇢
�2, |x| � 0.5,
�1.9 + 0.1 cos(2⇡x), |x| < 0.5

and implement free boundary conditions on the computational domain [�3, 3].
The initial setting for h

m

= 0.2 is shown in Figure 7. Once again, we compute
the numerical solution on the uniform grid with �x = 1/200 and run the
simulations until time t = 0.5.

As in Example 1, we first compute the numerical solution of the two-layer
system (bh

m

= 0) and the situation here is even worse. The obtained results
contain severe nonphysical oscillations in both the internal wave and velocities
as it can be seen in Figure 8. We then compute the numerical solutions of
the corresponding three-layer systems with bh

m

= 0.05, 0.1 and 0.2. As it can
be observed in Fig. 9, the oscillations have been largely reduced even for a
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Figure 8. Example 2: Solution of the two-layer system (bhm = 0).
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Figure 9. Example 2: Solution of the three-layer system with bhm = 0.05.
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Figure 10. Example 2: Solution of the three-layer system with bhm = 0.1.

Math. Model. Anal., 18(5):675–693, 2013.
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Figure 11. Example 2: Solution of the three-layer system with bhm = 0.2.

small value of bh
m

= 0.05, and as bh
m

is increased (see Figures 10 and 11), the
magnitude of oscillations gets smaller. Moreover, the velocity of the bu↵er layer
(u

m

) stays in the range of the upper (u1) and lower (u2) layer velocities. Thus,
in this example, the intermediate layer helps to absorb the severe instability
which is caused by the lack of hyperbolicity. We therefore conclude that the
introduction of a “bu↵er” layer is capable of achieving its goal of improving
stability properties of the two-layer shallow water system.

5 Discussion on the Hyperbolicity

As it has been mentioned above, the two-layer shallow water system (1.1) is
only conditionally hyperbolic and in the nonhyperbolic regime, its solution
typically develops instabilities. While in Section 4 we have demonstrated that
the use of the three-layer approximation may improve stability properties of
the system, in this section, we discuss and compare the hyperbolicity range of
the three-layer system (2.1) and the original two-layer system (1.1).

We begin with examining the first-order approximation of the eigenvalues
of the two-layer system (1.1) (see, e.g., [7, 27]), which is given by

�1,2(h1, u1, h2, u2) ⇡ U
m

±
p
g(h1 + h2),

�3,4(h1, u1, h2, u2) ⇡ U
c

±

s

(1�r)g
h1h2

h1+h2

✓
1� (u2 � u1)2

(1� r)g(h1 + h2)

◆
,

(5.1)

where

U
m

=
h1u1 + h2u2

h1 + h2
, U

c

=
h1u2 + h2u1

h1 + h2
.

From (5.1), one expects that the two-layer shallow water system (1.1) is
hyperbolic as long as

(u2 � u1)
2 < (1� r)g(h1 + h2), (5.2)

and thus the hyperbolicity condition for the two-layer shallow water system
(1.1) depends on the relationship between (u2�u1)2 and (1� r)g(h1+h2). To
illustrate this relation we follow [6, 13] by randomly choosing the values of h1,
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Figure 12. Hyperbolicity check for the two-layer system (1.1): The blue points represent
the range of hyperbolicity.

h2, u1 and u2 and numerically checking the hyperbolicity of each data set. The
results are shown in Fig. 12, where the values of (1� r)g(h1 + h2) are plotted
against (u2�u1)2. In this figure, the hyperbolic region is marked using the blue
points, while the nonhyperbolic one is specified using the red points. As one
can see, the hyperbolic and nonhyperbolic regions are approximately separated
by the straight line with the slope 1. This result is the same as the one reported
in [6,13] and it confirms the accuracy of the eigenvalue approximation used to
obtain (5.2).

Next, we perform a similar hyperbolicity study of the three-layer system
(2.1) using its quasilinear form (3.10) and numerically check whether all of the
eigenvalues of the matrix on the LHS of (3.10) are real for the given set of data.
Similarly to the two-layer case, we study the relationship between (u2 � u1)2

and (1� r)gH, where H := h1+h
m

+h2. To this end, we first randomly select
the total depth H 2 [0, 2], parameter ↵ 2 [0.3, 0.7], the velocities u1 and u2

such that (0  |u1�u2|  1) and set h2 := ↵H�h
m

/2, h1 = (1�↵)H�h
m

/2.
We then let h

m

to vary from a very small value (0.01) to the larger values
(0.05, 0.1 and 0.2) and up to 1.9min ((1� ↵)H,↵H), which is only 5% smaller
than the largest theoretically possible value of h

m

. The obtained results are
shown in Figures 13–15, where as before the hyperbolic regions are marked
using the blue points and the nonhyperbolic ones are specified using the red
points. Notice that sinceH cannot be less than h

m

, there is a (small) horizontal
white strip at the bottom of each graph in Figures 13 and 14 (larger the h

m

larger the width of the white strip is).

As one can see in Figures 13 and 14, in the three-layer case (unlike the
two-layer one), there is no clear dividing line between the hyperbolic and non-
hyperbolic regions for small and even intermediate values of h

m

. However, one
can observe that the hyperbolic region increases as h

m

increases. When h
m

reaches h
m

= 1.9min ((1� ↵)H,↵H), the hyperbolic region for the three-layer
system (see Fig. 15) becomes about twice larger than the one for the corre-
sponding two-layer system (see Figure 12). This experiment suggests that in
order to significantly improve the hyperbolicity of the two-layer shallow water

Math. Model. Anal., 18(5):675–693, 2013.
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Figure 13. Hyperbolicity check for the three-layer system (2.1) with hm = 0.01 (left) and
hm = 0.05 (right): The blue points represent the range of hyperbolicity.
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Figure 14. The same as in Fig. 13 but with hm = 0.1 (left) and hm = 0.2 (right).

system, we need to introduce an unrealistically deep intermediate layer (such
as 1.9min {(1� ↵)H,↵H}), for which the three-layer system practically re-
duces to the single-layer one. Our result is consistent with the result reported
in [6, 13]: It shows that to substantially gain the hyperbolicity, the interme-
diate layer has to be as deep as 90% of the total depth, which clearly cannot
be considered as a “bu↵er” layer. Therefore, we arrive at the conclusion that
even though adding the third layer may improve the stability properties of the
two-layer shallow water system, the hyperbolicity cannot be guaranteed by a
“bu↵er” layer approach.
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