
\mathrm{S}\mathrm{I}\mathrm{A}\mathrm{M} \mathrm{J}. \mathrm{A}\mathrm{P}\mathrm{P}\mathrm{L}. \mathrm{M}\mathrm{A}\mathrm{T}\mathrm{H}. © 2023 \mathrm{S}\mathrm{o}\mathrm{c}\mathrm{i}\mathrm{e}\mathrm{t}\mathrm{y} \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{I}\mathrm{n}\mathrm{d}\mathrm{u}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{l} \mathrm{a}\mathrm{n}\mathrm{d} \mathrm{A}\mathrm{p}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{e}\mathrm{d} \mathrm{M}\mathrm{a}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{s}
\mathrm{V}\mathrm{o}\mathrm{l}. 83, \mathrm{N}\mathrm{o}. 3, \mathrm{p}\mathrm{p}. 1098--1125

MODELING IMMUNITY TO MALARIA WITH AN
AGE-STRUCTURED PDE FRAMEWORK*

ZHUOLIN QU\dagger , DENIS PATTERSON\ddagger , LAUREN M. CHILDS\S , CHRISTINA

J. EDHOLM\P , JOAN PONCE\| , OLIVIA PROSPER\#, AND LIHONG ZHAO\dagger \dagger 

Abstract. Malaria is one of the deadliest infectious diseases globally, causing hundreds of thou-
sands of deaths each year. It disproportionately affects young children, with two-thirds of fatalities
occurring in under-fives. Individuals acquire protection from disease through repeated exposure,
and this immunity plays a crucial role in the dynamics of malaria spread. We develop a novel age-
structured PDE malaria model, which couples vector-host epidemiological dynamics with immunity
dynamics. Our model tracks the acquisition and loss of antidisease immunity during transmission
and its corresponding nonlinear feedback onto the transmission parameters. We derive the basic
reproduction number (\scrR 0) as the threshold condition for the stability of disease-free equilibrium;
we also interpret \scrR 0 probabilistically as a weighted sum of cases generated by infected individu-
als at different infectious stages and different ages. We parametrize our model using demographic
and immunological data from sub-Saharan regions. Numerical bifurcation analysis demonstrates the
existence of an endemic equilibrium, and we observe a forward bifurcation in \scrR 0. Our numerical
simulations reproduce the heterogeneity in the age distributions of immunity profiles and infection
status created by frequent exposure. Motivated by the recently approved RTS,S vaccine, we also
study the impact of vaccination; our results show a reduction in severe disease among young children
but a small increase in severe malaria among older children due to lower acquired immunity from
delayed exposure.
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1. Introduction. Malaria, a parasitic disease transmitted by mosquitoes, infects
hundreds of millions of people each year; the majority of cases are in Sub-Saharan
Africa, where the most prevalent species is Plasmodium falciparum (P. falciparum),
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MODELING IMMUNITY TO MALARIA WITH A PDE FRAMEWORK 1099

and the highest mortality burden is in young children. Immunity to malaria plays a
key role in clinical outcomes and studies have shown that repeated exposure to malaria
parasites promotes the development of immunity to severe disease [31]. Consequently,
different transmission intensities impact the rate at which humans acquire immunity
to clinical disease, resulting in different distributions of protection across age in differ-
ent regions [14, 18]. Regions with low malaria transmission tend to have fairly equal
protection against clinical disease across age, whereas the severity of symptoms in
high-transmission regions peaks in young children, with large proportions of the adult
population asymptomatically infected [7, 50]. Because asymptomatic infections may
be less transmissible to mosquitoes [2], the level of antidisease immunity in the popula-
tion feeds back into the probability of transmission, and therefore disease prevalence.
This feedback loop between disease prevalence and antidisease immunity is important
to understand in the context of disease control, since control measures modify trans-
mission intensity and can therefore indirectly impact immunity in the population [33].
For example, malaria interventions that reduce exposure, like insecticide-treated nets
and antimalarial treatments, shift the peak of severe malaria incidence to older ages
[8, 22, 42]. In regions marked by seasonal malaria transmission, the age distribution
tends to be shifted toward older children because exposure to malaria parasites is
less regular [53]. This has important implications for how to implement life-saving
interventions like intermittent preventive treatment (IPT), the periodic use of anti-
malarial drugs in infants and young children regardless of infection status. Studies in
northern Ghana, which experiences intense seasonal transmission, estimate that IPTi
(IPT for infants) prevents 25\% of clinical malaria cases during the first year of life,
compared with a 59\% reduction in clinical cases in Tanzania, where there is peren-
nial transmission [21]. These findings have prompted some to recommend targeting
control strategies that reduce mortality, such as the use of IPT, in older children in
regions with seasonal or low transmission [12, 21, 36].

While mathematical modeling has been a key tool in understanding malaria dy-
namics for over a century [34, 48], relatively few models have attempted to incorporate
the dynamic feedback between acquired immunity and disease prevalence. The intro-
duction of immunity to improve upon existing malaria models began in the 1970s,
with the hypothesis that there were several types of acquired immunity to malaria,
including loss of infectivity and loss of detectable parasite levels [14]. In [16], Dutertre
incorporated acquired immunity by prolonging the time to return to susceptible in
the event of re-exposure to malaria, and Elderkin et al. [17] assumed that parasite-
load influences resistance to infection. In the 1980s, Aron [3], in a delay-differential
equation framework, included exposure-boosting immunity by assuming that immu-
nity gradually decays over time, but will rebound if another exposure occurs within
\tau years. In retrospective studies involving malaria-therapy patient data, numerous
works incorporated a combination of innate and adaptive immunity [40].

More recently, immunity has been incorporated in models in more nuanced ways,
including feedback between multiple scales through immuno-epidemiological models.
Gulbudak et al. [23] developed a time-since-infection model in which the pathogen
and two antibody response dynamics are tracked within the host. These within-host
dynamics feed back into the epidemiological model by impacting the transmission
rate of the pathogen from hosts to vectors, and host recovery rate. A nested age-
structured partial differential equation (PDE) model was introduced by Cai, Tuncer,
and Martcheva [6] to assess population-level effects of the complex within-host dynam-
ics in an immuno-epidemiological context; they found that the impact of treatment
has a larger effect in the context of lower immunity [6]. Work by Vogt, Lorenzo, and
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1100 QU ET AL.

Feng [54] showed with an age-structured PDE that chronic, asymptomatic malaria in-
fections represent an important transmission reservoir. A recent extension with time-
since-vaccination explores the role of waning and boosting of immunity on the ability
to control disease and finds that reducing the effective reproduction number below one
is insufficient to guarantee loss of malaria [55]. Numerous other models include vacci-
nation but forgo immunity feedback and, thus, are less relevant for our comparisons.

Filipe et al. [18] introduced an age-structured PDE model of malaria transmission
tracking acquired immunity. They considered the role of partial protection from clin-
ical disease through acquired immunity and also immunity to parasite levels through
increased clearance. An extension to the work of Filipe et al. studied the trade-offs
between loss of immunity acquisition due to decreased exposure and found that initial
reductions following interventions may offset longer scale resurgence due to the loss of
immunity [20]. However, the negative effect could be mitigated by a combination of
vector control and vaccination strategies. Our model is motivated by Filipe et al. [18]
and its extensions, but with several key differences. We relax the assumption of a fixed
force of infection by age, allowing the force of infection to vary as immunity changes,
and we allow different contributions to immunity by disease state [45]. Finally, we
consider two types of vaccination: one motivated by the outcomes of the recently ap-
proved RTS,S vaccine, producing short-lived antiparasite immunity [11, 41, 44], and
one modeling the potential outcomes of a blood-stage vaccine [11, 58]. Furthermore,
while Filipe et al. [18] study immunity profiles at equilibrium, we present a mathe-
matical analysis of our model including calculation of the basic reproduction number.

2. Mathematical model. We propose an age-structured mixed PDE-ODE (or-
dinary differential equation) model to describe the P. falciparum malaria transmission
dynamics in humans (subsection 2.1) and mosquitoes (subsection 2.2). We extend this
model to an immuno-epidemiological model by coupling the human-mosquito system
to age-structured PDEs tracking immunity levels in the human population; human
immune levels, in turn, impact the progression of the disease through nonlinear linking
functions (subsection 2.3). Our model mimics the empirically observed development
of acquired immunity to malaria through repeated exposure, and loss of immunity
over time via waning. A schematic diagram of the system is given in Figure 1, and a
summary of the state variables and parameters is given in Tables 1 and 2.
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Fig. 1. Infection dynamics flowchart for the age-structured model. Solid arrows indicate flow of
individuals, and dashed arrows indicate exposure that leads to infection. The dotted curves represent
the interactions between the vector-host transmission and population immunity in humans.
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MODELING IMMUNITY TO MALARIA WITH A PDE FRAMEWORK 1101

Table 1
Description of variables used in (2.1), (2.4), and (2.8).

Notation Description

SH(\alpha , t) Age density of susceptible humans at time t
EH(\alpha , t) Age density of exposed humans at time t

AH(\alpha , t) Age density of asymptomatically infected humans at time t
DH(\alpha , t) Age density of humans with severe disease at time t

VH(\alpha , t) Age density of humans fully protected by vaccination

PH(\alpha , t) = SH +EH +AH +DH + VH , age density of humans at time t

NH(t) =
\int A
0 PH(\alpha , t)d\alpha , total humans at time t

SM (t) Number of susceptible mosquitoes at time t

EM (t) Number of exposed mosquitoes at time t
IM (t) Number of infectious mosquitoes at time t

NM (t) = SM +EM + IM , total mosquitoes at time t

Ce(\alpha , t) Pooled exposure-acquired immunity for all people at age \alpha and time t

Cm(\alpha , t) Pooled maternal-derived immunity for all people at age \alpha and time t
C\nu (\alpha , t) Pooled vaccine-derived immunity for all people at age \alpha and time t

CH(\alpha , t) = c1Ce + c2Cm + c3C\nu , total pooled antidisease immunity\widetilde CH(\alpha , t) =CH/PH , per-person antidisease immunity

\Lambda H(t) Average force of infection on humans
\Lambda M (t) Average force of infection on mosquitoes

f(\Lambda H) Average boosting rate of exposure-acquired immunity

2.1. Human equations. The human population in our model is divided into
five compartments related to different stages of infection: susceptible, SH ; exposed,
EH ; asymptomatic infected, AH ; severely diseased, DH ; and vaccination-protected,
VH . We assume individuals in SH are protected by the inherent immunity levels of
the entire population, so we do not incorporate a recovered compartment. We let
PH(\alpha , t) := SH(\alpha , t) +EH(\alpha , t) +AH(\alpha , t) +DH(\alpha , t) + VH(\alpha , t) denote the number
of age-\alpha humans at time t for \alpha \in [0,A), where A is the finite maximal human age,

and NH(t) :=
\int A

0
PH(\alpha , t)d\alpha is thus the total human population.

The susceptible human, SH , is exposed upon an infectious bite from mosquitoes
and enters the EH stage at the rate \Lambda H . This force of infection (2.3) depends on
the number of bites a person receives per time unit, bH , the infectivity of infectious
mosquitoes per bite, \beta M , and the prevalence of infection in mosquitoes, IM/NM .

After an average of 1/h-day incubation period, the exposed EH develops sufficient
numbers of the transmissible form of the parasite (\geq 10/\mu l) in the bloodstream and
becomes infectious to mosquitoes. The infectious population either develops severe
disease (such as fever symptoms) DH with probability \rho or remains asymptomatic
AH with probability 1 - \rho . We assume that the asymptomatic individuals AH are less
transmissible to mosquitoes than those who are symptomatic DH , that is, \beta A <\beta D.

Recovery from severe disease DH occurs at rate rD, where a portion, \phi , recovers
to be susceptible and the rest become asymptomatic. Recovery from asymptomatic
disease to the susceptible stage occurs at rate rA, which results in clearance of the
parasites. In the asymptomatic stage, AH , re-exposure can cause ``superinfection,""
with probability \psi , which results in severe disease, DH . Parameters were chosen with
the focus of the model being P. falciparum malaria in Sub-Saharan Africa (Table 2).

Transitions between disease states depend on the antidisease immunity within
the population. In particular, we assume that the transition probabilities discussed
above, \rho ,\phi ,\psi , depend on the average antidisease immunity level per person at age

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/0

6/
23

 to
 1

29
.1

15
.2

.2
6 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



1102 QU ET AL.

Table 2
Parameters and their values for Plasmodium falciparum malaria in Sub-Saharan Africa (see

subsection 5.2 for calibrated parameters). Note that in the column for references the - - indicates
the value was assumed.

Description Unit Value Ref.

gH(\alpha ) Per capita birth rate of humans day - 1 dist. [29]

\mu H(\alpha ) Per capita natural mortality rate of humans day - 1 dist. calibration
\mu D(\alpha ) Per capita disease induced mortality rate day - 1 0 - -

1/h Mean incubation period in humans day 15 [43]

\phi (CH) Probability of progression from DH to SH - - (5.2)
\rho (CH) Probability of progression from EH to DH - - (5.2)

\psi (CH) Probability of progression from AH to DH - - (5.2)

rA Recovery rate from AH to SH day - 1 1/360 [18]
rD Recovery rate of DH to SH day - 1 1/180 [18]

gM Per capita recruitment rate of mosquitoes day - 1 0.5 - -

\mu M Per capita natural mortality rate of mosquitoes day - 1 1/10 [19]
1/\sigma Mean incubation period in mosquitoes day 15 [18, 43]

bh Number of mosquito bites a human tolerates day - 1 5 [10]
bm Number of bites a mosquito desires day - 1 0.6 [10]

bH(\cdot , \cdot ) Number of mosquito bites per person day - 1 - (2.7)

bM (\cdot , \cdot ) Number of bites per mosquito day - 1 - (2.7)
\beta M Per-bite infectivity of infectious mosquitoes IM - 0.25 [18]

\beta D Per-bite infectivity of humans with severe disease - 0.35 [18]

\beta A Per-bite infectivity of asymptomatic humans - 0.03 [18]
dm Average length of maternal immunity year 0.25 [18, 51]

de Average length of exposure-acquired immunity year 5 [18, 58]

\nu b(\alpha ) Vaccination (immunity boosting) rate year - 1 dist. - -
d\nu Average length of vaccine-boosted immunity (C\nu ) year 5 - -

\nu p(\alpha ) Vaccination rate year - 1 dist. - -

\eta (\alpha ) Vaccine efficacy against infection - 0.73 [44]

w Waning rate of infection-protection immunity year - 1 1/0.66 [44]

Immunity acquisition coefficients

m0 Fraction of maternal immunity conferred - 1 - -
c1 Weight for exposure-acquired immunity - 1 - -

c2 Weight for maternal immunity - 1 - -

c3 Weight for vaccine-derived immunity - 1 - -
cS Weight for boosting at SH - 0.75 - -

cE Weight for boosting at EH - 0.1 - -

cA Weight for boosting at AH - 0.1 - -
cD Weight for boosting at DH - 0.05 - -

c\nu Relative strength of boosting from vaccination - 0.75 - -

\alpha and time t, i.e., \widetilde CH(\alpha , t) := CH(\alpha , t)/PH(\alpha , t). This immunity level determines
the probability through sigmoid-shaped linking functions, which are described and
calibrated in subsection 5.2. We consider immunity on a per-person basis rather than
at a population level so that immunity is not dependent on demographic effects, such
as population growth.

Humans are born susceptible at rate gH and die naturally at rate \mu H . People
in the severe disease state, DH , may suffer from the disease-induced mortality at
rate \mu D. For simplicity, we set \mu D = 0 throughout, but evaluating the impact of
disease-induced mortality on our model would be an interesting future direction.

Antiparasitic immunity cannot be generated by infection, so we model this type
of immunity solely as arising from vaccination such as from the recently approved
RTS,S vaccine [44]. Via vaccination, the susceptible human population which received
all three doses of RTS,S transitions to a vaccinated class, VH , at an age-dependent

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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MODELING IMMUNITY TO MALARIA WITH A PDE FRAMEWORK 1103

vaccination rate, \nu p(\alpha ), and with an initial vaccine efficacy, \eta (\alpha ). The vaccinated
population loses immunity, returning to the susceptible state, at rate w.

The following system of PDEs describes the infection dynamics in humans:

(2.1)

\partial tSH + \partial \alpha SH = \phi ( \widetilde CH)rDDH + rAAH  - \Lambda H(t)SH

 - \eta (\alpha )\nu p(\alpha )SH +wVH  - \mu H(\alpha )SH ,

\partial tEH + \partial \alpha EH =\Lambda H(t)SH  - hEH  - \mu H(\alpha )EH ,

\partial tAH + \partial \alpha AH = (1 - \rho ( \widetilde CH))hEH  - \psi ( \widetilde CH)\Lambda H(t)AH

+ (1 - \phi ( \widetilde CH))rDDH  - rAAH  - \mu H(\alpha )AH ,

\partial tDH + \partial \alpha DH = \rho ( \widetilde CH)hEH +\psi ( \widetilde CH)\Lambda H(t)AH

 - rDDH  - (\mu H(\alpha ) + \mu D(\alpha ))DH ,

\partial tVH + \partial \alpha VH = \eta (\alpha )\nu p(\alpha )SH  - wVH  - \mu H(\alpha )VH ,

with the boundary conditions

(2.2) SH(0, t)=

\int A

0

gH(\alpha )PH(\alpha , t)d\alpha ,EH(0, t) =AH(0, t) =DH(0, t) = VH(0, t) = 0,

and initial conditions

SH(\alpha ,0) = SH,0(\alpha ), EH(\alpha ,0) =EH,0(\alpha ), AH(\alpha ,0) =AH,0(\alpha ),

DH(\alpha ,0) =DH,0(\alpha ), VH(\alpha ,0) = VH,0(\alpha ), \alpha \in [0,A).

The force of infection in (2.1) is given by

\Lambda H(t) = bH
\bigl( 
NM (t),NH(t)

\bigr) 
\beta M

IM (t)

NM (t)
,(2.3)

and the biting rate bH is defined in (2.7). The boundary condition (2.2) assumes that
all newborns are susceptible and do not receive vaccination at age zero for biological
realism, thus \nu p(0) = 0.

2.2. Mosquito equations. We model the infection dynamics in mosquitoes
using an ODE system, where the mosquito population is divided into three com-
partments: susceptible, SM ; exposed, EM ; and infectious, IM . We do not include a
recovered state as mosquitoes do not recover within their lifespan. The force of infec-
tion acting on mosquitoes, \Lambda M , is given by (2.5) and depends on the number of bites a
mosquito takes per time unit, bM ; the infectivity of human infectious stages per bite,
\beta D and \beta A; and the infection level in the human population. Once infected, mosqui-
toes transition from exposed to infectious after 1/\sigma days on average. Mosquitoes are
recruited at rate gM and die at rate \mu M , regardless of infectious status.

We thus have the following susceptible-exposed-infected mosquito dynamics:

(2.4)

dSM

dt
= - \Lambda M (t)SM + gM  - \mu MSM ,

dEM

dt
=\Lambda M (t)SM  - \sigma EM  - \mu MEM ,

dIM
dt

= \sigma EM  - \mu MIM , where

(2.5) \Lambda M (t) = bM
\bigl( 
NM (t),NH(t)

\bigr) 1

NH(t)

\int A

0

\biggl( 
\beta DDH(\alpha , t) + \beta AAH(\alpha , t)

\biggr) 
d\alpha .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1104 QU ET AL.

The mosquito dynamics operate on a shorter time-scale relative to the disease and
human demographic dynamics, and our analysis focuses on equilibrium solutions.
Thus, we assume henceforth that the system (2.4) is in quasi-static equilibrium. This
means that the total mosquito population NM (t) is constant and given by

NM (t) := SM (t) +EM (t) + IM (t) =
gM
\mu M

,

and the number of infected mosquitoes at the quasi-static equilibrium is

(2.6) I \star M (t) =
gM
\mu M

\cdot \sigma 

\sigma + \mu M
\cdot \Lambda M (t)

\Lambda M (t) + \mu M
=NM \cdot \sigma 

\sigma + \mu M
\cdot \Lambda M (t)

\Lambda M (t) + \mu M
.

The quasi-static approximation replaces IM in (2.3) by I \star M , i.e.,

\Lambda  \star 
H(t) = bH

\bigl( 
NM (t),NH(t)

\bigr) 
\beta M

I \star M (t)

NM (t)
.

To model human-mosquito contacts, we assume that the total number of bites
per unit time is given by the ``compromised"" biting rate,

b(NM ,NH) = bmNM bhNH/(bmNM + bhNH),

where bm and bh are the number of bites a mosquito desires given sufficient human
population and the number of bites a human can tolerate, respectively [10]. Thus,
the compromised bites per mosquito and bites per human are given by

(2.7) bM (NM ,NH) =
bm bhNH

bmNM + bhNH
and bH(NM ,NH) =

bm bhNM

bmNM + bhNH
,

respectively. This choice allows us to consider both the commonly studied ``big city""
(NH \gg NM ) and ``small village"" (NM \gg NH) scenarios in a unified framework.

2.3. Immunity equations. Natural immunity to malaria is acquired through
repeated exposure [15, 25] so we track the immunity level within the human population
and study how it subsequently affects disease transmission. There are two main types
of immunity to malaria: antidisease immunity, which reduces the probability of clinical
disease, and antiparasite immunity, which is responsible for the clearance of parasite.
Antidisease immunity affects the branching probabilities in the disease progression
among humans, i.e., \rho , \phi , and \psi (see Figure 1). We use constant rates for parameters
that are related to antiparasite immunity, such as rA, rD, and w.

Antidisease immunity is inherited at birth via maternal antibodies, can be devel-
oped through exposure to infected mosquitoes, and can be boosted via vaccination of
specific antigen targets. Let Cm(\alpha , t) denote the pooled maternal-derived immunity
for all people aged \alpha at time t, Ce(\alpha , t) denote the pooled exposure-acquired immu-
nity, and C\nu (\alpha , t) denote the pooled vaccine-derived immunity. The total antidisease
immunity is CH = c1Ce + c2Cm + c3C\nu , where c1, c2, and c3 are scaling parameters.

Exposure-acquired immunity is boosted from exposure to infectious mosquito
bites, which is modeled by a function of the force of infection \Lambda H . We assume the
vaccination-protected population in VH do not contribute to the boosting of exposure-
acquired immunity. The vaccine-derived immunity C\nu can be boosted through vacci-
nation at the rate \nu b(\alpha , t); we assume only those from the susceptible population can
be vaccinated. We incorporate scaling parameters cS , cE , cA, cD, and c\nu to model
different boosting efficacies.
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MODELING IMMUNITY TO MALARIA WITH A PDE FRAMEWORK 1105

The immunity boosting rate increases with the exposure level, but there is a
refractory period after each exposure in which immunity cannot be boosted. Following
[22], we employ a saturation function allowing a maximum amount of boosting per
time unit, which we apply to the exposure rate \Lambda H in (2.8a). In particular, we chose

f(x) =
x

\gamma x+ 1
, \gamma \geq 0, x\geq 0.

The maternal-derived, exposure-acquired, and vaccine-derived immunity wane in time
with half-life periods dm, de, and d\nu , respectively. As pooled quantities, immunity
may also be lost due to natural or disease-induced deaths (impact only a DH/PH

fraction of the age-\alpha people). The age-structured PDEs for the immunity dynamics
are thus given by

\partial tCe + \partial \alpha Ce = f(\Lambda H) (cSSH + cEEH + cAAH + cDDH)(2.8a)

 - 
\biggl( 

1

de
+ \mu H(\alpha ) + \mu D(\alpha )

DH

PH

\biggr) 
Ce,

\partial tCm + \partial \alpha Cm = - 
\biggl( 

1

dm
+ \mu H(\alpha ) + \mu D(\alpha )

DH

PH

\biggr) 
Cm,(2.8b)

\partial tC\nu + \partial \alpha C\nu = c\nu \nu b(\alpha )SH  - 
\biggl( 

1

d\nu 
+ \mu H(\alpha ) + \mu D(\alpha )

DH

PH

\biggr) 
C\nu ,(2.8c)

with boundary conditions

Cm(0, t) =m0

\int A

0

gH(\alpha )
\bigl( 
c1Ce(\alpha , t) + c3C\nu (\alpha , t)

\bigr) 
d\alpha ,(2.9)

Ce(0, t) = 0, C\nu (0, t) = c\nu \nu b(0)SH(0, t),

and initial conditions Ce(\alpha ,0) = Ce,0(\alpha ), Cm(\alpha ,0) = Cm,0(\alpha ), C\nu (\alpha ,0) = C\nu ,0(\alpha ).
In the boundary condition for maternal immunity (2.9), newborns inherit maternal
immunity with efficacy coefficient m0. We also omit the contribution of maternal
immunity itself by implicitly setting c2 = 0 in the integral. This is a simplifying
assumption which keeps the expression for Cm(0, t) explicit. In practice, as maternal
immunity decays quickly, it is effectively zero by the time child-bearing age is reached.

3. Well-posedness of the model. The human-mosquito-immunity coupled
system given by (2.1), (2.4), and (2.8) is well-posed and has a unique nonnegative
solution under biologically reasonable conditions on the coefficients, parameters, and
initial and boundary conditions. We assume for simplicity that the human population
size, NH , is constant. To achieve constant population size, suppose

(3.1) P \ast 
H(\alpha ) = \mu \ast 

H NH e
 - M(\alpha ), \mu \ast 

H :=

\Biggl( \int A

0

e - M(\alpha ) d\alpha 

\Biggr)  - 1

, NH > 0,

where \mu \ast 
H is the so-called crude death rate and M(\alpha ) :=

\int \alpha 

0
\mu H(\sigma )d\sigma . We further

assume that the mosquito population is fixed at its equilibrium level, i.e., NM =
gM/\mu M . We impose the following conditions to guarantee well-posedness of the model:

(H1) SM (0), EM (0), and IM (0) are nonnegative,
(H2) SH,0, EH,0, AH,0, DH,0, VH,0, Cm,0, Ce,0, C\nu ,0 \in L1((0,A);\BbbR +),
(H3) The parameters dm, de, d\nu , gM , \mu M , h, rA, rD, and w are positive, and all

other parameters are nonnegative,
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1106 QU ET AL.

(H4) \mu H \in L1
loc((0,A);\BbbR +) with

\int A

0
\mu H(\alpha )d\alpha =\infty ,

(H5) f \in Lip(\BbbR +;\BbbR +), gH , \nu p, \nu b, \eta \in L\infty ((0,A);\BbbR +), essinf\alpha \in [0,A)\eta (\alpha )\nu p(\alpha )> 0,
(H6) \phi , \psi , \rho \in Lip(\BbbR +; [0,1]),
(H7) there is no disease induced mortality, i.e., \mu D \equiv 0.
It is usually straightforward to establish appropriate existence and uniqueness

results for a mixed ODE-PDE age-structured system and numerous results in the
literature do so via semigroup methods [27, 56]. However, due to the nature of the
boundary conditions in our problem, we must proceed via the results of Thieme [52]
instead (see also [5, 35] for similar applications to age-structured models). Full details
regarding the well-posedness of the model are supplied in Appendix A.

4. Stability of the disease-free equilibrium and \bfscrR 0 calculation.

4.1. Normalized system. In order to simplify the forthcoming stability cal-
culations, we rewrite the system using population proportions, which are given by\widetilde SH(\alpha , t)=SH(\alpha , t)/PH(\alpha , t), \widetilde EH(\alpha , t) = EH(\alpha , t)/PH(\alpha , t), and so on. The propor-
tions thus obey the following evolution equations:

(4.1)
\partial t \widetilde SH + \partial \alpha \widetilde SH = - \Lambda  \star 

H(t)\widetilde SH+\phi ( \widetilde CH)rD \widetilde DH+rA \widetilde AH - \eta (\alpha )\nu p(\alpha )\widetilde SH+w\widetilde VH ,
\partial t \widetilde EH + \partial \alpha \widetilde EH =\Lambda  \star 

H(t)\widetilde SH  - h \widetilde EH ,

\partial t \widetilde AH + \partial \alpha \widetilde AH = (1 - \rho ( \widetilde CH))h \widetilde EH  - (\psi ( \widetilde CH)\Lambda  \star 
H(t) + rA) \widetilde AH + (1 - \phi ( \widetilde CH))rD \widetilde DH ,

\partial t \widetilde DH + \partial \alpha \widetilde DH = \rho ( \widetilde CH)h \widetilde EH +\psi ( \widetilde CH)\Lambda  \star 
H(t) \widetilde AH  - rD \widetilde DH ,

\partial t \widetilde VH + \partial \alpha \widetilde VH = \eta (\alpha )\nu p(\alpha )\widetilde SH  - w\widetilde VH ,\widetilde SH(0, t) = 1, \widetilde EH(0, t) = 0, \widetilde AH(0, t) = 0, \widetilde DH(0, t) = 0, \widetilde VH(0, t) = 0.

The system (4.1) has the same force of infection \Lambda H(t) as defined in (2.3), and under
the quasi-static approximation (2.6), it may be written as

\Lambda  \star 
H(t) = bH(NM ,NH) \cdot \beta M \sigma 

\sigma + \mu M
\cdot \Lambda M (t)

\Lambda M (t) + \mu M
, where

\Lambda M (t) = bM (NM ,NH)\mu \ast 
H

\int A

0

e - M(\alpha )
\Bigl( 
\beta D \widetilde DH(\alpha , t) + \beta A \widetilde AH(\alpha , t)

\Bigr) 
d\alpha .

The exposure, maternal, and vaccine-derived immunity per person evolve according to

(4.2)

\partial t \widetilde Ce + \partial \alpha \widetilde Ce = f(\Lambda  \star 
H)
\Bigl\{ 
cS \widetilde SH + cE \widetilde EH + cA \widetilde AH + cD \widetilde DH

\Bigr\} 
 - 
\widetilde Ce

de
,

\partial t \widetilde Cm + \partial \alpha \widetilde Cm = - 
\widetilde Cm

dm
,

\partial t \widetilde C\nu + \partial \alpha \widetilde C\nu = c\nu \nu b(\alpha )\widetilde SH  - 
\widetilde C\nu 

d\nu 
,

with initial and boundary conditions, respectively, given by

\widetilde Ce(0, t) = 0, \widetilde Cm(0, t) =
m0

PH(0, t)

\int A

0

gHPH

\bigl( 
c1 \widetilde Ce + c3 \widetilde C\nu 

\bigr) 
d\alpha , \widetilde C\nu (0, t) = c\nu \nu b(0);\widetilde Ce(\alpha ,0) = \widetilde Ce,0(\alpha ), \widetilde Cm(\alpha ,0) = \widetilde Cm,0(\alpha ), \widetilde C\nu (\alpha ,0) = \widetilde C\nu ,0(\alpha ).

Total immunity per person is given by \widetilde CH(\alpha , t) = c1 \widetilde Ce(\alpha , t)+c2 \widetilde Cm(\alpha , t)+c3 \widetilde C\nu (\alpha , t).
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MODELING IMMUNITY TO MALARIA WITH A PDE FRAMEWORK 1107

4.2. Stability of the disease-free equilibrium. In addition to regularity con-
ditions (H1)--(H7), for the stability analysis, we further assume that \rho , \psi , \phi are
smooth, i.e., \rho , \psi , \phi \in C\infty (\BbbR +; [0,1]).

Since disease-induced mortality \mu D is absent by assumption, summing the human
compartment equations (2.1) shows that the number of age-\alpha humans at time t,
PH(\alpha , t), evolves according to

(4.3) \partial tPH + \partial \alpha PH = - \mu H(\alpha )PH , PH(0, t) =

\int A

0

gH(\alpha )PH(\alpha , t)d\alpha .

Equation (4.3) can be solved explicitly using the method of characteristics [39], and
its behavior as t\rightarrow \infty is given by

(4.4) PH(\alpha , t)\approx Ke - q\alpha  - M(\alpha ) eqt, K =NH

\Biggl( \int A

0

e - M(a) - qa da

\Biggr)  - 1

\in \BbbR +,

where NH \in \BbbR + is the initial population size, and the constant q solves

(4.5)

\int A

0

gH(\alpha )e - q\alpha  - M(\alpha ) d\alpha = 1

(see, for example, [1]). The term Ke - q\alpha  - M(\alpha ) in (4.4) is the stable-age distribution,
which is the asymptotically stable demographic structure of the population. If q < 0,
the population will eventually die out; if q > 0, the population grows without bound.
Hence we assume that q = 0, so that the human population has both a constant size
and a constant demographic structure. If we start from the stable-age distribution
with q= 0, then (3.1) holds, i.e., P \ast 

H(\alpha ) = \mu \ast 
H NH e

 - M(\alpha ).
The disease-free equilibrium (DFE) of the system (4.1) and (4.2) has the form\Bigl\{ \Bigl( 

\theta (\alpha ),0,0,0,1 - \theta (\alpha ), \widetilde C\ast 
e (\alpha ),

\widetilde C\ast 
m(\alpha ), \widetilde C\ast 

\nu (\alpha )
\Bigr) 
: \alpha \geq 0

\Bigr\} 
, where

\theta (\alpha ) = e - 
\int \alpha 
0

\pi (a)da

\biggl( 
1 +

\int \alpha 

0

we
\int a
0

\pi (z)dz da

\biggr) 
, \pi (\alpha ) =w+ \eta (\alpha )\nu p(\alpha ).

For any level of \widetilde CH , the disease-free solution (\theta (\alpha ),0,0,0,1 - \theta (\alpha )) is an equilibrium
of the human disease compartments subsystem (4.1). It remains to identify the steady
state immunity distributions \widetilde C\ast 

e , \widetilde C\ast 
m, and \widetilde C\ast 

\nu at the DFE. At the DFE, the steady
state for vaccine-derived immunity obeys d

d\alpha 
\widetilde C\ast 
\nu (\alpha ) =  - \widetilde C\ast 

\nu /d\nu + c\nu \nu b(\alpha )\theta (\alpha ) with

initial condition \widetilde C\ast 
\nu (0) = c\nu \nu b(0). Hence

\widetilde C\ast 
\nu (\alpha ) = c\nu e

 - \alpha /d\nu 

\biggl( 
\nu b(0) +

\int \alpha 

0

ea/d\nu \nu b(a)\theta (a)da

\biggr) 
.

Exposure-acquired immunity obeys d
d\alpha 
\widetilde C\ast 
e (\alpha ) =  - \widetilde C\ast 

e /de with \widetilde C\ast 
e (0) = 0. Hence\widetilde C\ast 

e (\alpha )\equiv 0. Similarly, the steady state for maternal immunity obeys

d

d\alpha 
\widetilde C\ast 
m(\alpha ) = - 

\widetilde C\ast 
m

dm
, \widetilde C\ast 

m(0) =m0

\int A

0

gH(\alpha )e - M(\alpha )
\bigl( 
c3 \widetilde C\ast 

\nu (\alpha )
\bigr) 
d\alpha .

Thus, the maternal immunity steady state has the form \widetilde C\ast 
m(\alpha ) = \widetilde C\ast 

m(0)e - \alpha /dm .
Finally, the steady state distribution for total immunity per person is given by

\widetilde C\ast 
H(\alpha ) = c2 \widetilde C\ast 

m(0)e - \alpha /dm + c3c\nu e
 - \alpha /d\nu 

\biggl( 
\nu b(0) +

\int \alpha 

0

ea/d\nu \nu b(a)\theta (a)da

\biggr) 
.
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1108 QU ET AL.

To determine the stability of the DFE, consider a perturbation of the form

\widetilde SH(\alpha , t) = \theta (\alpha ) + \varepsilon S(\alpha , t), \widetilde EH(\alpha , t) = \varepsilon E(\alpha , t), \widetilde AH(\alpha , t) = \varepsilon A(\alpha , t),\widetilde DH(\alpha , t) = \varepsilon D(\alpha , t), \widetilde VH(\alpha , t) = 1 - \theta (\alpha ) + \varepsilon V (\alpha , t),\widetilde Ce(\alpha , t) = \varepsilon e(\alpha , t), \widetilde Cm(\alpha , t) = \widetilde C\ast 
m(\alpha ) + \varepsilon m(\alpha , t), \widetilde C\nu (\alpha , t) = \widetilde C\ast 

\nu (\alpha ) + \varepsilon \nu (\alpha , t).

For notational convenience, let \widetilde CH(\alpha , t) = \widetilde C\ast 
H(\alpha )+\varepsilon H(\alpha , t) and \varepsilon H(\alpha , t) = c1\varepsilon e(\alpha , t)+

c2\varepsilon m(\alpha , t) + c3\varepsilon \nu (\alpha , t). First, linearizing the force of infection yields

\Lambda  \star 
H(t)\approx C \star 

\int A

0

e - M(\alpha ) (\beta D\varepsilon D(\alpha , t) + \beta A\varepsilon A(\alpha , t))d\alpha ,

where C \star = \mu \ast 
H b

2
m b

2
hNM NH \beta M \sigma /(bmNM +bhNH)2(\sigma +\mu M )\mu M . Next linearize the

system of PDEs (4.1). We can first linearize the terms not involving immunity to
reduce the human subsystem to

\partial t\varepsilon S + \partial \alpha \varepsilon S = - \theta (\alpha )\Lambda  \star 
H(t) + \phi ( \widetilde CH)rD\varepsilon D + rA\varepsilon A  - \eta (\alpha )\nu p(\alpha )\varepsilon S +w\varepsilon V ,

\partial t\varepsilon E + \partial \alpha \varepsilon E = \theta (\alpha )\Lambda  \star 
H(t) - h\varepsilon E ,

\partial t\varepsilon A + \partial \alpha \varepsilon A = (1 - \rho ( \widetilde CH))h\varepsilon E + (1 - \phi ( \widetilde CH))rD\varepsilon D  - rA\varepsilon A,

\partial t\varepsilon D + \partial \alpha \varepsilon D = \rho ( \widetilde CH)h\varepsilon E  - rD\varepsilon D,

\partial t\varepsilon V + \partial \alpha \varepsilon V = \eta (\alpha )\nu p(\alpha )\varepsilon S  - w\varepsilon V .

We linearize the immunity terms as follows. Expand \phi ( \widetilde CH) = \phi ( \widetilde C\ast 
H + \varepsilon H) about the

steady state \widetilde C\ast 
H(\alpha ) at a given age \alpha to obtain \phi ( \widetilde CH)\approx \phi ( \widetilde C\ast 

H) + \phi \prime ( \widetilde C\ast 
H)\varepsilon H + \scrO (\varepsilon 2H).

Thus, to leading order in the perturbations, we obtain \phi ( \widetilde CH)rD\varepsilon D \approx \phi ( \widetilde C\ast 
H)rD\varepsilon D.

Treating the other immunity terms similarly yields

\partial t\varepsilon S + \partial \alpha \varepsilon S = - \theta (\alpha )\Lambda  \star 
H(t) + \phi ( \widetilde C\ast 

H)rD\varepsilon D + rA\varepsilon A  - \eta (\alpha )\nu p(\alpha )\varepsilon S +w\varepsilon V ,

\partial t\varepsilon E + \partial \alpha \varepsilon E = \theta (\alpha )\Lambda  \star 
H(t) - h\varepsilon E ,

\partial t\varepsilon A + \partial \alpha \varepsilon A = (1 - \rho ( \widetilde C\ast 
H))h\varepsilon E + (1 - \phi ( \widetilde C\ast 

H))rD\varepsilon D  - rA\varepsilon A,

\partial t\varepsilon D + \partial \alpha \varepsilon D = \rho ( \widetilde C\ast 
H)h\varepsilon E  - rD\varepsilon D,

\partial t\varepsilon V + \partial \alpha \varepsilon V = \eta (\alpha )\nu p(\alpha )\varepsilon S  - w\varepsilon V .

Next make the exponential ansatz \varepsilon \cdot (\alpha , t) = ept\^\varepsilon \cdot (\alpha ) for some p \in \BbbC , to reduce the
linearized system to the following set of ODEs:

d

d\alpha 
\^\varepsilon S = - \theta (\alpha )\^\Lambda H + \phi ( \widetilde C\ast 

H(\alpha ))rD\^\varepsilon D + rA\^\varepsilon A  - (\eta (\alpha )\nu p(\alpha ) + p)\^\varepsilon S +w\^\varepsilon V ,(4.6a)

d

d\alpha 
\^\varepsilon E = \theta (\alpha )\^\Lambda H  - (h+ p) \^\varepsilon E ,(4.6b)

d

d\alpha 
\^\varepsilon A = (1 - \rho ( \widetilde C\ast 

H(\alpha )))h \^\varepsilon E + (1 - \phi ( \widetilde C\ast 
H(\alpha ))) rD \^\varepsilon D  - (rA + p)\^\varepsilon A,(4.6c)

d

d\alpha 
\^\varepsilon D = \rho ( \widetilde C\ast 

H(\alpha ))h\^\varepsilon E  - (rD + p)\^\varepsilon D,(4.6d)

d

d\alpha 
\^\varepsilon V = \eta (\alpha )\nu p(\alpha )\^\varepsilon S  - (w+ p)\^\varepsilon V ,(4.6e)
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MODELING IMMUNITY TO MALARIA WITH A PDE FRAMEWORK 1109

with initial conditions \^\varepsilon S(0) = \^\varepsilon E(0) = \^\varepsilon D(0) = \^\varepsilon A(0) = \^\varepsilon V (0) = 0. The linearized
force of infection \^\Lambda H is now given by

\^\Lambda H :=C \star 

\int A

0

e - M(\alpha ) (\beta D\^\varepsilon D(\alpha ) + \beta A\^\varepsilon A(\alpha ))d\alpha .

We can immediately read off from (4.6b) that

\^\varepsilon E(\alpha ) = \^\Lambda H

\int \alpha 

0

e - (h+p)(\alpha  - a)\theta (a)da=: \^\Lambda H \scrE (\alpha ,p),

and similarly, it follows from (4.6d) that

\^\varepsilon D(\alpha ) = \^\Lambda H h

\int \alpha 

0

e - (rD+p)(\alpha  - a)\rho ( \widetilde C\ast 
H(a))\scrE (a, p)da=: \^\Lambda H \scrD (\alpha ,p).

Finally, solving (4.6c) yields the following expression for \^\varepsilon A(\alpha ):

\^\Lambda H

\int \alpha 

0

e - (rA+p)(\alpha  - a)
\Bigl( 
h(1 - \rho ( \widetilde C\ast 

H(a)))\scrE (a, p) + rD(1 - \phi ( \widetilde C\ast 
H(a)))\scrD (a, p)

\Bigr) 
da

=: \^\Lambda H \scrA (\alpha ,p).

Plugging the expressions above for \^\varepsilon D and \^\varepsilon A into the force of infection \^\Lambda H leads to
the following characteristic equation for p:

(4.7) 1 =C \star 

\int A

0

e - M(\alpha ) (\beta D\scrD (\alpha ,p) + \beta A\scrA (\alpha ,p))d\alpha =: \zeta (p).

The stability of the DFE is determined by the sign of the root of the nonlinear equation
\zeta (p) - 1 = 0 with the largest real part, which we denote by p \star . When Re(p \star )> 0, linear
perturbations will result in an exponential growth from the DFE, which indicates that
the DFE is unstable. Similarly, when Re(p \star )< 0, perturbations about the DFE decay
exponentially, indicating that the DFE is linearly asymptotically stable. We set p= 0
in the right-hand side of (4.7) to obtain the quantity

(4.8) \scrR  \star 
0 := \zeta (0) =C \star 

\int A

0

e - M(\alpha ) (\beta D\scrD (\alpha ,0) + \beta A\scrA (\alpha ,0))d\alpha ,

which provides a threshold condition for the stability of the DFE.

Theorem 4.1. The DFE is locally asymptotically stable if \scrR  \star 
0 < 1 and unstable

if \scrR  \star 
0 > 1.

Remark 4.2. The rigorous justification that the roots of the characteristic equation
determine the local asymptotic stability of the DFE for our model can be proven by
following the arguments of Martcheva and Thieme [35, Appendix B].

Proof. Suppose \scrR  \star 
0 = \zeta (0)< 1. For p \in \BbbC , it can be shown that | \zeta (p)| \leq \zeta (Re(p))

and furthermore, for p \in \BbbR +, p \mapsto \rightarrow \zeta (p) is nonincreasing (see Appendix B for further
details). If the real part of p is positive, then

| \zeta (p)| \leq \zeta (Re(p))\leq \zeta (0) =\scrR  \star 
0 < 1, p\in \BbbC ,

a contradiction. Therefore the characteristic equation \zeta (p) = 1 cannot have a solution
with positive real part.
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1110 QU ET AL.

For p\in \BbbR +, p \mapsto \rightarrow \zeta (p) is continuous. It can be shown that

lim
p\rightarrow \infty 

\scrD (\alpha ,p) = lim
p\rightarrow \infty 

\scrA (\alpha ,p) = 0 (uniformly in \alpha )

and hence that limp\rightarrow \infty \zeta (p) = 0 (see Appendix B). If \scrR  \star 
0 = \zeta (0)> 1, then \zeta (0) - 1> 0,

and for p sufficiently large, \zeta (p) - 1 < 0 so by continuity the characteristic equation
has at least one positive real root. Therefore the DFE is unstable in this case.

The expression given in (4.8) is a two-generation factor [13]; we thus define the
basic reproduction number as the average next generation factor,

(4.9) \scrR 0 :=
\sqrt{} 
\scrR  \star 

0.

4.3. \bfscrR 0 interpretation. We rewrite \scrR 0 in (4.9) as

\scrR 0 =

\sqrt{}    \biggl( bM \beta M
\sigma 

\sigma + \mu M
\cdot 1

\mu M

\biggr) 
\times 

\Biggl( 
bH

\int A

0

\mu \ast 
H e

 - M(\alpha ) (\beta D\scrD (\alpha ,0) + \beta A\scrA (\alpha ,0))d\alpha 

\Biggr) 
=:
\sqrt{} 

\scrR MH \times \scrR HM ,

where \scrR MH and \scrR HM are two reproduction numbers for the two one-way transmis-
sion routes: One infectious human (mosquito) may generate \scrR HM (\scrR MH) infected
mosquitoes (humans) per generation, and the number of new infectious individuals
created throughout one complete cycle (two generations) is the product of the two
one-way reproduction numbers. The overall basic reproduction number per genera-
tion for one infectious individual, regardless of whether it's a mosquito or a human,
is the geometric mean of \scrR HM and \scrR MH .

Mosquito-to-human transmission. The reproduction number for mosquito-to-
human transmission is given by

\scrR MH = bM \beta M
\sigma 

\sigma + \mu M

1

\mu M
.

An infected mosquito enters IM and survives to become infectious with probability
\sigma /(\sigma + \mu M ), and it spends on average 1/\mu M being infectious. Thus the expected
number of human infections generated by an infected mosquito, \scrR MH , is the product
of the number of bites a mosquito has per day, bM , the probability of transmission
to human per bite, \beta M , and the expected infectious period of a mosquito, \tau M =
\sigma /(\sigma + \mu M )\mu M .

Human-to-mosquito transmission. The reproduction number for human-to-
mosquito transmission is given by

\scrR HM = bH

\int A

0

\mu \ast 
H e

 - M(\alpha ) (\beta D\scrD (\alpha ,0) + \beta A\scrA (\alpha ,0))d\alpha , where(4.10)

\scrE (\alpha ,0) =
\int \alpha 

0

e - h(\alpha  - a)\theta (a)da,(4.11a)

\scrD (\alpha ,0) =

\int \alpha 

0

e - rD(\alpha  - a)\rho h\scrE (a,0)da,(4.11b)

\scrA (\alpha ,0) =

\int \alpha 

0

e - rA(\alpha  - a)
\Bigl( 
h(1 - \rho )\scrE (a,0) + rD(1 - \phi )\scrD (a,0)

\Bigr) 
da.(4.11c)
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MODELING IMMUNITY TO MALARIA WITH A PDE FRAMEWORK 1111

To facilitate the interpretation, let X(\alpha ) denote the infection status of a person at
age \alpha , and define Ts as the time that the person spends in stage s, which follows an
exponential distribution with parameter given by the rate of transition out of s.

At the DFE, the probability that a randomly chosen person of age a can be
infected (i.e., susceptible, not protected by vaccination) is \theta (a). For an age-\alpha infected
person, if we assume infection occurs at age a, then the person must spend \alpha  - a
days in stage EH and TEH

\sim Exp(h). Thus, conditioning on the age of infection, the
probability that an age-\alpha person is in stage EH can be written as

\BbbP (X(\alpha ) =EH) =

\int \alpha 

0

he - h(\alpha  - a)\theta (a)da= h\scrE (\alpha ,0).

To interpret (4.11b), we consider an age-\alpha person, who was in state EH at age a (with
probability \BbbP (X(a) = EH)) and immediately progressed to DH (with probability \rho ).
The person then spends \alpha  - a days in DH and TDH

\sim Exp(rD). Thus, conditioning
on the age of transition to DH , the probability an age-\alpha person is in DH is given by

\BbbP (X(\alpha ) =DH) =

\int \alpha 

0

rD e
 - rD(\alpha  - a)\rho \BbbP (X(a) =EH)da= rD\scrD (\alpha ,0).

We note that, in general, an infected person can also enter DH due to the superinfec-
tion (EH \rightarrow AH \rightarrow DH); however, this situation does not happen at DFE.

On average, people spend \tau D := 1/rD days in DH (regardless of age). Thus the
expected time that an infected age-\alpha person spends in DH is

\scrD (\alpha ,0) = \BbbP (X(\alpha ) =DH)\times \tau D.

In (4.11c), an age-\alpha infected person may enter AH stage via two routes, EH \rightarrow AH

or EH \rightarrow DH \rightarrow AH . For the first scenario, suppose the person progresses from EH

to AH at age a and spends \alpha  - a days in AH , where TAH
\sim Exp(rA). Thus

(4.12) \BbbP (X(\alpha ) =AH , EH \rightarrow AH) =

\int \alpha 

0

rA e
 - rA(\alpha  - a)(1 - \rho )\BbbP (X(a) =EH)da.

Similarly, for the second route, suppose the person progresses from DH to AH at age
a and spends \alpha  - a days in AH ; then

(4.13) \BbbP (X(\alpha )=AH , EH \rightarrow DH \rightarrow AH)=

\int \alpha 

0

rA e
 - rA(\alpha  - a)(1 - \phi )\BbbP (X(a) =DH)da.

Now sum (4.12) and (4.13) to obtain the probability that an age-\alpha person is in AH ,

\BbbP (X(\alpha ) =AH) =

\int \alpha 

0

rA e
 - rA(\alpha  - a)

\Bigl( 
h (1 - \rho )\scrE (a,0)+rD (1 - \phi )\scrD (a,0)

\Bigr) 
da= rA\scrA (\alpha ,0).

If \tau A := 1/rA denotes the expected time people spend in stage AH , then

\scrA (\alpha ,0) = \BbbP (X(\alpha ) =AH)\times \tau A

is the expected time that an infected age-\alpha person spends in AH .
Finally, the expected number of infected mosquitoes created by an infected age-\alpha 

person across all infectious states, DH and AH , is given by

\scrR HM,\alpha := bH\beta D\scrD (\alpha ,0) + bH\beta A\scrA (\alpha ,0),
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1112 QU ET AL.

and, by the law of total expectation, the human-to-mosquito reproduction number is

\scrR HM =\BbbE [\BbbE [cases produced per infected person | person is aged \alpha ]]

=\BbbE [\scrR HM,\alpha ] =

\int A

0

\scrR HM,\alpha \mu 
\ast 
H e

 - M(\alpha ) d\alpha .

This recovers the reproduction number stated in (4.10).

5. Numerical examples. All codes to reproduce the results of this section
are available on Github (https://github.com/AMSMRC1A/age struct malaria). Pa-
rameter values are shown in Table 2; the time unit for calculations is days but is
converted to years for plots. We assume the scaled population sizes are NH = 1 and
NM = gM/\mu M = 5 for humans and mosquitoes, respectively.

5.1. Finite-difference schemes. We develop a finite-difference scheme for the
proposed age-structured model with immunity feedback. A suitable numerical scheme
should mimic the biological properties of the system, including positivity preservation
and the conversation laws of population size and immunity. Our numerical scheme
achieves these properties, while not imposing severe time-step constraints.

We consider a uniform grid with nodes \alpha k, tn in the age and time dimensions,
such that \alpha k+1  - \alpha k = \Delta \alpha and tn+1  - tn = \Delta t for all k,n, and we let \Delta \alpha = \Delta t. The
approximated value of quantity Q at any point (\alpha k, tn) on the discretized domain
is denoted by Q(\alpha k, tn) \approx Qk,n. Following the general idea in [32], we employ an
implicit-explicit approach and derive the following scheme:

Sk+1,n+1
H =

Sk,n
H +\Delta t(\phi k,nrDD

k,n
H + rAA

k,n
H +wV k,n

H )

1 +\Delta t(\Lambda n
H + \eta k+1 \nu k+1,n+1

p + \mu k+1
H )

,(5.1a)

Ek+1,n+1
H =

Ek,n
H +\Delta t\Lambda n

HS
k+1,n+1
H

1 +\Delta t(h+ \mu k+1
H )

,(5.1b)

Ak+1,n+1
H =

(1 - rA\Delta t)A
k,n
H +\Delta t

\Bigl( 
(1 - \rho k,n)hEk+1,n+1

H +(1 - \phi k,n)rDD
k,n
H

\Bigr) 
1 +\Delta t(\psi k,n\Lambda n

H + \mu k+1
H )

,(5.1c)

Dk+1,n+1
H =

(1 - rD\Delta t)Dk,n
H +\Delta t

\Bigl( 
\rho k,nhEk+1,n+1

H +\psi k,n\Lambda n
HA

k+1,n+1
H

\Bigr) 
1 +\Delta t(\mu k+1

H + \mu k+1
D )

,(5.1d)

V k+1,n+1
H =

(1 - w\Delta t)V k,n
H +\Delta t \eta k+1 \nu k+1,n+1

p Sk+1,n+1
H

1 +\Delta t\mu k+1
H

,(5.1e)

where \Lambda n
H = bH(Nn

M ,N
n
H)\beta M I \star ,nM /Nn

M , \phi k,n = \phi (Ck,n
H /P k,n

H ), \rho k,n = \rho (Ck,n
H /P k,n

H ),

and \psi k,n =\psi (Ck,n
H /P k,n

H ). The boundary conditions for SH(0, t) in (2.2) and Cm(0, t)
in (2.9) are discretized using the trapezoidal rule.

For the sake of efficiency, we have approximated the time derivatives using back-
ward Euler and impose implicit discretization (at time level tn+1) only when the
values are available to avoid solving additional linear systems.

Denoting P k,n
H = Sk,n

H +Ek,n
H +Ak,n

H +Dk,n
H +V k,n

H , the discretization (5.1) satisfies

P k+1,n+1
H  - P k,n

H

\Delta t
= - \mu k+1

H P k+1,n+1
H  - \mu k+1

D Dk+1,n+1
H .

Hence all the stage progression terms are balanced with each other at each time
step, and the resulting scheme preserves the conservation law of population. When
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MODELING IMMUNITY TO MALARIA WITH A PDE FRAMEWORK 1113

\mu D = 0, this is consistent with (4.3). From (5.1c)--(5.1e), we obtain the time-stepping
constraint for maintaining the positivity of the population size

1 - rA\Delta t\geq 0, 1 - rD\Delta t\geq 0, and 1 - w\Delta t\geq 0,

which is not restrictive in practice, given the baseline values of rA, rD, and w.
Similarly, we discretize the immunity system (2.8) by evaluating all the terms on

the right-hand side at (\alpha k+1, tn+1), and we obtain

Ck+1,n+1
e =

Ck,n
e +\Delta tBk+1,n+1

1 +\Delta t (1/de +Mk+1,n+1)
, Ck+1,n+1

m =
Ck,n

m

1 +\Delta t (1/dm +Mk+1,n+1)
,

Ck+1,n+1
\nu =

Ck,n
\nu +\Delta t c\nu \nu 

k+1,n+1
b Sk+1,n+1

H

1 +\Delta t (1/d\nu +Mk+1,n+1)
, where

Bk+1,n+1 = f(\Lambda n+1
H )

\Bigl( 
cSS

k+1,n+1
H + cEE

k+1,n+1
H + cAA

k+1,n+1
H + cDD

k+1,n+1
H

\Bigr) 
,

and Mk+1,n+1 = \mu k+1
H + \mu k+1

D Dk+1,n+1
H /P k+1,n+1

H .

5.2. Model calibration. We parametrize our model using demographic and
immunological data from areas in Sub-Saharan Africa.

Calibration of demographic structure. With Kenya as our baseline population, we
employ a scaled skew normal distribution [37] for the fertility rate function,

gH(\alpha ) =
2 b4
b1

\varphi 
\Bigl( \alpha /365 - b2

b1

\Bigr) 
\Phi 

\biggl( 
b3

\Bigl( \alpha /365 - b2
b1

\Bigr) \biggr) 
/(365\times 2),

where \varphi (\alpha ) and \Phi (\alpha ) are the probability density function and the cumulative distri-
bution function for the standard normal distribution, respectively. The fertility per
person is assumed to be half of the fertility per woman. We fit the model to the
data in [29, Table 5.1] and obtain coefficients b1 = 13.20, b2 = 17.96, b3 = 4.08, and
b4 = 4.02.

To have a population with a constant demographic structure, we calibrate the
natural mortality rate \mu H(\alpha ) by setting q = 0 in (4.5) and solving for a balanced
mortality distribution \mu H(\alpha ). We fit a three-component competing-risk model [49],

\mu 
(0)
H (\alpha ) =

\Bigl( 
d1 + d2e

 - d3\alpha /365 + d4e
d5\alpha /365

\Bigr) 
/365,

using the mortality estimates from [57], where d1 = 0.002, d2 = 0.09, d3 = 2.1,

d4 = 10 - 4, d5 = 0.09. The balanced mortality rate \mu H(\alpha )\approx 5.8\mu 
(0)
H (\alpha ). The calibrated

fertility and mortality and the corresponding stable population age distribution are
given in Figures 2(a) and 2(b), respectively.

Calibration of immunity linking parameters. We calibrate our model to the im-
munity curves in [18, Figure 7B], where the population's susceptibility to developing
clinical disease (corresponding to \rho and \psi ) is a function of age and environmen-
tal exposure levels, measured by the annual entomological inoculation rate (aEIR),

aEIR= bH
I \star 
M

NM
. We study medium to high aEIR (\geq 20) since low aEIR corresponds

to regions with sporadic malaria incidence, which are not the focus of this paper.
To describe the immunity feedback onto disease transmission through the

immunity-dependent probabilities \rho , \phi , \psi , we pick a sigmoid-shaped linking func-
tion

(5.2) \scrS (x;f0, f1, s, r) = f0 +
f1  - f0

1 + e - (x - s)/r

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1114 QU ET AL.

(a) Demographic curves (b) Stable age distribution (c) Linking functions

Fig. 2. Model calibration results as described in subsection 5.2.

(a) (b) aEIR = 44.66 (c) aEIR = 84.61

Fig. 3. (a) Per-person immunity profile, \widetilde CH , in the population depends on the age (x-axis)
and the exposure level (y-axis). The cross-sectional plots are (b) for a low-transmission region
(\beta M = 0.008, \scrR 0 = 1.24) and (c) for a high-transmission region (\beta M = 0.25, \scrR 0 = 6.93).

and assume that responses in the progression probabilities to severe disease are similar,
that is, \phi ( \widetilde CH) = \scrS ( \widetilde CH ;f0, f1, s0, r0), \rho ( \widetilde CH) = \psi ( \widetilde CH) = \scrS ( \widetilde CH ;f1, f0, s1, r1). We fix
f0 = 0.01, f1 = 1, and the calibrated parameters s0 = 2.43, r0 = 1.28, s1 = 3.19, r1 =
1.03, and the corresponding curves are plotted in Figure 2(c).

Calibrated baseline scenario. We calibrate the model relative to a baseline scenario
with \scrR 0 \approx 6.93 (shown in Figure 3(c)) and aEIR \approx 84.61. Figure 3(a) shows the
distribution of per-person immunity profile in different transmission settings; we vary
\beta M (mosquito infectivity) to create a range of aEIR and keep all the other parameters
at baseline values. The maternal immunity level decays quickly after birth for all the
aEIR values. In the lower transmission setting (Figure 3(b)), the exposure-acquired
immunity profile is flat across all ages, while in the high-transmission setting (Figure
3(c)), exposure-acquired immunity is boosted as people get older and receive repeated
exposure. Filipe et al. [18] required both antidisease and antiparasite immunity to
see profiles by age that differed in low- and high-transmission settings. In contrast,
our model only requires dynamic immunity feedback with antidisease immunity to see
the variation in immunity profiles as transmission settings differ.

5.3. Impact of immunity feedback.
Impact on endemic equilibrium and bifurcation. We numerically capture the sta-

ble endemic equilibrium and obtain a forward bifurcation using parameter \beta M in Fig-
ure 4(b) (Figure SM3 gives the plots using \scrR 0 in the x-axis). As \beta M (exposure level)
increases, the fraction of asymptomatic population AH keeps increasing, and the frac-
tion of severe disease population, DH , starts decreasing when \beta M > 0.03 (\scrR 0 > 2.5).
This reflects the fact that, due to a stronger exposure, dynamic immunity creates

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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MODELING IMMUNITY TO MALARIA WITH A PDE FRAMEWORK 1115

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4. Row 1: Comparison of bifurcation diagrams with fixed low immunity, dynamic immu-
nity, and fixed high immunity. Figure SM3 shows the bifurcation plots using \scrR 0 as the x-axis, and
Figure SM1 shows the age-structure of the endemic equilibrium across the range of \beta M in each case.
Row 2: Age-distributions of infection status at endemic equilibrium when \scrR 0 = 4 in each immunity
setup (using \beta M values indicated by the vertical dash-dot lines in black). Row 3: Age-distributions
of infection status at endemic equilibrium for dynamic immunity case (using \beta M values indicated
by the vertical dotted lines in green).

larger feedback on the progression parameters, which end up reducing the fraction of
severe disease among the infectious groups DH/(AH +DH). We also notice that the
DH curve hits a local minimal around \beta M = 0.3 (\scrR 0 = 7.6) with immunity feedback.

We then plot the bifurcation diagram with immunity feedback turned off, where
we assume constant disease progression parameters regardless of the change in the
population immunity level. For example, we take

\=\rho (\beta M ) =
1

NH

\int A

0

\rho 
\bigl( \widetilde CEE

H (\alpha ;\beta M )
\bigr) 
P \ast 
H(\alpha )d\alpha ,

where \widetilde CEE
H is the total per-person immunity level at the endemic equilibrium, which

varies depending on exposure level, parametrized by \beta M . The values for \=\phi and \=\psi 
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1116 QU ET AL.

are defined similarly. The calculated \=\rho gives the population average of the transition
parameter \rho ( \widetilde CH) at the endemic equilibrium (under dynamic immunity); this allows
a more fair comparison with constant immunity settings. We consider a population
with a fixed low-immunity profile (\beta M = 0.008), which gives \=\rho = \=\psi = 0.91, \=\phi = 0.23.
In addition, we consider a fixed high-immunity scenario with \beta M = 0.25, which gives
\=\rho = \=\psi = 0.11, and \=\phi = 0.92.

As shown in Figures 4(a) and 4(c), at higher exposure levels, without dynamic
immune feedback, the fraction of severe disease increases monotonically, and the
fixed low-immunity case gives worse disease outcomes. Compared with the dynamic-
immunity case (Figure 4(b)), under the same exposure level (\scrR 0 = 4, \beta M at vertical
dash-dot lines in black), there are more infectious people (AH+DH) for the constant-
immunity cases, and the fraction of asymptomatic individuals is much lower.

Impact on age distribution of the disease status. Dynamic immunity creates het-
erogeneity in the age-distributions of infection curves (Figure 4(e)), while the fixed-
immunity cases give almost homogeneous distributions (Figures 4(d) and 4(f)), except
a fast transition near age zero due to susceptibility following maternal protection.

The amount of heterogeneity in the age distribution, under the dynamic-immunity
setting, also depends on the exposure level. When there is low malaria transmission
(Figure 4(g)), the boosting in the exposure-acquired immunity is limited, and there
is almost no heterogeneity in the age distribution curves beyond three years of age.
As the transmission level increases (Figures 4(h) and 4(i)), more heterogeneity is
developed among young children under 15 years of age. At the baseline scenario
(Figure 4(i)), the fraction of severe disease peaks at around one year old. Once
immunity achieves a sufficiently high level through repeated exposure, the fraction of
symptomatic infection settles down to a relatively low constant level. Moreover, given
the large young population cohort in the current demographic setting (Figure 2(b)),
children in this age range have the highest severe disease counts.

These observations, including decreases of disease severity with age, qualitatively
match field observations from high-transmission regions [18, 47, 50]. Thus, our results
confirm the necessity of employing a dynamic mechanism in tracking the population
immunity and linking it with epidemiological parameters.

5.4. Exploration of vaccination. As a preliminary investigation, we simulate
an RTS,S malaria vaccine implementation among young children using the vaccination
rate \nu p(\alpha ) = \nu 0p I\alpha \in [9\times 30,10\times 30], where I(\cdot ) is the indicator function. This assumes that
children complete a full three-dose series of RTS,S at around 9\sim 10 months old [38].
We consider a high daily per-capita vaccination rate for this age cohort, \nu 0p = 0.8.
Under this rate, among a population of about 9.4 million in the malaria endemic
counties in Kenya, there are around 58,000 eligible children vaccinated per year (at
the endemic equilibrium), which is within the capacity of the local infrastructure [38].

Figure 5 shows the impact under the prescribed vaccination setting. There is a
drop in the number of severely diseased for children aged 9 months to about three
years old (Figure 5(a)), which is about 20,176 (or 4.05\% of) severe cases avoided.
When above three years old, the vaccination leads to a slightly higher DH curve and
a lower AH curve. This is due to the reduced exposure from the vaccination (Figure
5(b)), which results in a lower level of exposure-acquired immunity. Thus, vaccinated
children are more likely to progress to the DH stage rather than AH when being
exposed at an older age. This effect has been reported in other malaria interventions
that reduce exposure, where the age distribution of severe malaria peaks at older ages
[8, 22, 42].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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MODELING IMMUNITY TO MALARIA WITH A PDE FRAMEWORK 1117

Vaccination 
age range

(a) Stable age distribution

Vaccination 
age range

(b) Per-person immunity distribution

Fig. 5. Comparison of endemic equilibrium between vaccination level \nu 0p = 0.8 and no vaccina-

tion \nu 0p = 0. Vaccination lowers the severe disease cases before three years old and slightly increases
that number for older ages (a), which results from the reduced exposure (b).

6. Discussions. We propose and analyze an age-structured mixed PDE-ODE
model of malaria transmission which couples the vector-host epidemiological dynam-
ics with immunity dynamics. Our model tracks the acquisition and loss of immu-
nity due to exposure and waning and incorporates vaccinations. It also captures
the corresponding feedback on the immunity-related epidemiological parameters and
characterizes the resulting heterogeneity in age-based immunity distributions.

We prove the well-posedness of the model and analyze the stability of the DFE,
the threshold condition of which defines the basic reproduction number, \scrR 0. We then
interpret the \scrR 0 as an averaged one-way reproduction number between humans and
mosquitoes, collecting the weighted contribution from different infectious stages and
age cohorts. Owing to the complexity of our model, numerical bifurcation analysis is
required to study the existence and structure of the endemic equilibrium.

We parametrize and calibrate the model according to a high-transmission setting
in Sub-Saharan Africa. Our numerical study emphasizes the essential role of immunity
dynamics for population level predictions and successfully reproduces various qual-
itative features of age-infection distributions observed in high-transmission regions.
Due to frequent exposure in high-aEIR regions, people develop a high level of antidis-
ease immunity over time. As observed from the bifurcation plots, the immunity, in
turn, reduces the overall fraction of severe disease. This immunity feedback creates
a strong heterogeneity in the age distribution of the immunity profile and infection
status. Our numerical results show that severe disease peaks in young children, and
more asymptomatic than severe cases are seen among children over 10 years of age.

We also numerically investigate the impact of a vaccine that produces short-lived
antiparasite immunity, motivated by RTS,S, in a simplified setting. Upon completion
of the full three-dose series of RTS,S, there is a large drop in severe disease for children
under three years of age. However, the effect may be reversed slightly among older
children due to the delay in developing exposure-acquired immunity.

As a proof of concept, our model offers important insights into malaria immunity
dynamics; however, we recognize various model assumptions that limit its ability to
make quantitative predictions for real-world scenarios. One of the biggest assump-
tions, for the sake of analytic tractability, is constant population size. We calibrated

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1118 QU ET AL.

the model to balance the fertility and natural mortality rates. Most developing coun-
tries in Sub-Saharan Africa have a growing population, and in future work, we will con-
sider the impact this population growth has on the system dynamics and our results.
We also assumed a zero disease-induced mortality rate, but in 2019, an estimated
409,000 people died of malaria, most of whom were young children in Sub-Saharan
Africa [9]. Thus, it is of evident interest to explore the impact of disease-induced
mortality in future work.

Although we did not observe multiple endemic equilibria or backward (subcritical)
bifurcation in the numerical study presented, these phenomena can occur for complex
age-structured models (cf. [28]) and are crucial to understand from the perspective of
malaria control [26]. Disease-induced mortality may induce backward bifurcations in
vector-host malaria models [10, 24], including those with age-structure [46], so relaxing
the constant population size assumption (as discussed above) further motivates a
thorough study of these phenomena. Vaccination has also been shown to induce
backward bifurcations in simpler epidemic models [4, 30], and it would be practically
useful to derive conditions for such a bifurcation to occur in our model. Indeed, the
ability of vaccination strategies to produce multiple endemic equilibria and backward
bifurcations makes it an essential next step to investigate these properties for a more
in-depth study of vaccination programs in the present modeling framework.

Further work could also include a more realistic description of RTS,S vaccine im-
plementation, such as including the boosting dose for two-year-old children to search
for an optimal strategy to improve disease outcomes. Additionally, our model provides
a framework to study blood-stage vaccines that boost antidisease immunity (C\nu vari-
able). Thus, in future work, we will compare the impact of vaccines and vaccination
programs that stimulate immunity via different mechanisms.

Appendix A. Well-posedness of the PDE-ODE model. We aim to for-
mulate our model as an abstract Cauchy problem of the form

d

dt
u(t) =\scrA u(t) +\scrF (u(t)), t\geq 0, u(0) = u0,

or, more precisely, as an integral equation of the form

(A.1) u(t) = u0 +\scrA 
\int t

0

u(s)ds+

\int t

0

\scrF (u(s))ds, t\geq 0.

When the linear operator \scrA generates a strongly continuous semigroup and \scrF is Lip-
schitz, it is relatively straightforward to establish the desired existence and uniqueness
result for an age-structured system [27, 56]. Due to the nature of the boundary con-
ditions in our model, \scrA will not be densely defined and we hence rely on the results
of Thieme [52] (see also [5, 35]). Although our calculations will establish an integral
solution satisfying (A.1), differentiability of the solution can further be established
with sufficient smoothness assumptions (see Thieme [52, Theorem 3.7]).

To apply the relevant semigroup results, we need to define the operators \scrA and
\scrF such that

(i) \scrA is a closed linear operator on a Banach space X, \lambda  - \scrA has a bounded
inverse, and for n\in \BbbN ,

\| (\lambda  - \scrA ) - n\| \leq Z

(\lambda  - \omega )n
for all \lambda >\omega ,

and Z and \omega positive constants;
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MODELING IMMUNITY TO MALARIA WITH A PDE FRAMEWORK 1119

(ii) X0 := \scrD (\scrA ) denotes the closure of the domain of \scrA ; for some C, a closed
convex subset of X, define C0 =C \cap X0 and take x0 \in C0;

(iii) \scrF : C0 \mapsto \rightarrow X is Lipschitz and linearly bounded, i.e., \| \scrF (x)\| \leq c(1 + \| x\| ) for
some c > 0.

We consider solutions with a fixed human population structure, i.e.,

PH(\alpha , t) = P \ast 
H(\alpha ) := \mu \ast 

HNHe
 - M(\alpha ), \mu \ast 

H =
1\int A

0
e - M(\alpha )d\alpha 

, NH > 0, for \alpha \in [0,A).

We also assume that the mosquito population level begins at its long-run equilibrium
level by setting NM = gM/\mu M . Replacing PH(\alpha , t) by P \ast 

H(\alpha ), we work with the
normalized system given by (4.1) for the human disease components and (4.2) for the
immunity components; the forces of infection in this normalized form are given by

\wedge M (H(t)) := bM (NM ,NH)\mu \ast 
H

\int A

0

\Bigl( 
\beta D \widetilde DH(\alpha , t) + (\beta A \widetilde AH(\alpha , t)

\Bigr) 
e - M(\alpha )d\alpha ,

\wedge H(IM (t)) := bH(NM ,NH)\beta M IM/NM .

The vectorH(t) = (0, \widetilde SH(t),0, \widetilde EH(t), . . . ,0, \widetilde C\nu (t))
T comprises the human and immune

components, with a zero entry for each boundary condition. Thus

dSM

dt
= - \wedge M (t)SM + gM  - \mu MSM ,

dEM

dt
=\wedge M (t)SM  - \sigma EM  - \mu MEM ,

dIM
dt

= \sigma EM  - \mu MIM ,

dH

dt
= \widehat \scrA H(t) + \widehat \scrF (SM ; IM ;EM ;H),

where \widehat \scrA : \scrD ( \widehat \scrA ) \mapsto \rightarrow \widehat X and \widehat \scrF :\widehat C0 \mapsto \rightarrow \widehat X with\widehat X :=\BbbR \times L1(0,A)\times \cdot \cdot \cdot \times \BbbR \times L1(0,A),

\scrD ( \widehat \scrA ) := \{ 0\} \times W 1,1(0,A)\times \cdot \cdot \cdot \times \{ 0\} \times W 1,1(0,A),\widehat C0 := \{ 0\} \times L1
\bigl( 
(0,A); [0,1]

\bigr) 
\times \cdot \cdot \cdot \times \{ 0\} \times L1

\bigl( 
(0,A); [0,\infty )

\bigr) 
.

W 1,1(0,A) is the space of functions in L1(0,A) whose weak derivatives are also in
L1(0,A). Let \vee \in \scrD ( \widehat \scrA ) and define \widehat \scrA by\widehat \scrA \vee =

\Bigl( 
 - \widetilde SH(0), - \partial \alpha \widetilde SH  - \eta (\alpha )\nu p(\alpha )\widetilde SH , - \widetilde EH(0), - \partial \alpha \widetilde EH  - h \widetilde EH , - \widetilde AH(0),

 - \partial \alpha \widetilde AH  - rA \widetilde AH , - \widetilde DH(0), - \partial \alpha \widetilde DH  - rD \widetilde DH , - \widetilde VH(0), - \partial \alpha \widetilde VH  - w\widetilde VH ,
 - \widetilde Ce(0), - \partial \alpha \widetilde Ce  - 

\widetilde Ce

de
, - \widetilde Cm(0), - \partial \alpha \widetilde Cm  - 

\widetilde Cm

dm
, - \widetilde C\nu (0), - \partial \alpha \widetilde C\nu  - 

\widetilde C\nu 

d\nu 

\Bigr) T
.

Similarly, for \vee \in \widehat C0 and (SM ,EM , IM )\in [0,NM ]3, let \scrF (SM ;EM ; IM ;\vee ) :=\Bigl( 
1, - \wedge H

\widetilde SH + \phi ( \widetilde CH)rD \widetilde DH + rA \widetilde AH +w\widetilde VH , 0, \wedge H
\widetilde SH ,

0, (1 - \rho ( \widetilde CH))h \widetilde EH  - \psi ( \widetilde CH)\wedge H
\widetilde AH + (1 - \phi ( \widetilde CH))rD \widetilde DH ,

0, \rho ( \widetilde CH)h \widetilde EH +\psi ( \widetilde CH)\wedge H
\widetilde AH , 0, \eta (\alpha )\nu p(\alpha )\widetilde SH ,

0, f(\wedge H)
\Bigl\{ 
cS \widetilde SH ,+cE \widetilde EH + cA \widetilde AH + cD \widetilde DH

\Bigr\} 
,

m0

\int A

0

gH(\alpha )e - M(\alpha )
\bigl( 
c1 \widetilde Ce + c3 \widetilde C\nu 

\bigr) 
d\alpha , 0, c\nu \nu b(0, t), c\nu \nu b(\alpha , t)\widetilde SH

\Bigr) T
.
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1120 QU ET AL.

These choices enforce the boundary conditions of our system. To complete the setup
of the human-mosquito system, let X =\BbbR \times \BbbR \times \BbbR \times \widehat X and define \scrA : \scrD (\scrA ) \mapsto \rightarrow X by

\scrA 

\left(    
SM

EM

IM
H

\right)    =

\left(    
 - \mu M 0 0 0
0  - (\sigma + \mu M ) 0 0
0 \sigma  - \mu M 0

0 0 0 \widehat \scrA 
\right)    
\left(    

SM

EM

IM
H

\right)    ,

where \scrD (\scrA ) =\BbbR \times \BbbR \times \BbbR \times \scrD ( \widehat \scrA ). Hence

\scrD (\scrA ) =\BbbR \times \BbbR \times \BbbR \times \{ 0\} \times L1(0,A)\times \cdot \cdot \cdot \times \{ 0\} \times L1(0,A) =:X0 \subset X,

and we may choose

C = [0,NM ]\times \cdot \cdot \cdot \times [0,NM ]\times \{ 0\} \times L1
\bigl( 
(0,A); [0,1]

\bigr) 
\times \cdot \cdot \cdot \times \{ 0\} \times L1(0,A),

which is a closed, convex subset of X and gives C = C0. The human disease compo-
nents are in L1((0,A); [0,1]), while the human immunity components are in L1(0,A).
Define \scrF : C0 \mapsto \rightarrow X by

\scrF 

\left(    
SM

EM

IM
H

\right)    =

\left(    
\wedge MSM + gM

\wedge MSM

0\widehat \scrF (SM ;EM ; IM ;H)

\right)    .

In the following, the norm on each space is always the natural one, for example,

\| \vee \| \widehat X = | \vee 1 | + \| \vee 2 \| L1 + | \vee 3 | + \| \vee 4 \| L1 + \cdot \cdot \cdot .

To show that \lambda  - \scrA has a bounded inverse and to verify condition (i), solve (\lambda  - \scrA )\vee = f
for \vee \in \scrD (\scrA ) and f \in X. To this end, let \vee = (SM ,EM , IM ,0, \widetilde SH ,0, \widetilde EH , . . . ,0, \widetilde C\nu )

T

and f = (fSM
, fEM

, fIM , fS1 , fS2 , . . . , f\nu 1 , f\nu 2)
T , and write

(\lambda  - \scrA )\vee =

\left(    
\lambda + \mu M 0 0 0

0 \lambda + \sigma + \mu M 0 0
0  - \sigma \lambda + \mu M 0

0 0 0 \lambda  - \widehat \scrA 
\right)    
\left(    

SM

EM

IM
(0, . . . , \widetilde C\nu )

T

\right)    = f.

Solving the equation above yields SM = f1/(\lambda +\mu M ), EM = f2/(\lambda +\sigma +\mu M ), and IM =
f3/(\lambda + \mu M ) + \sigma f2/((\lambda + \mu M )(\lambda + \sigma + \mu M )). The solutions for the PDE components
are largely repetitive; for example, solving \partial \alpha \widetilde SH + (\lambda + \eta (\alpha )\nu p(\alpha ))\widetilde SH = fS2

gives

\widetilde SH(\alpha ) = exp

\biggl( 
 - 
\int \alpha 

0

\bigl( 
\lambda + \eta (a)\nu p(a)

\bigr) 
da

\biggr) \biggl( 
fS1

+

\int \alpha 

0

e
\int a
0
(\lambda +\eta (s)\nu p(s))dsfS2

(a)da

\biggr) 
.

Next estimate the norm of each component to plug into the estimate on \| (\lambda  - \scrA ) - 1f\| .
For the most part, these are straightforward and follow similarly. For example,

\| \widetilde EH\| L1 \leq | fE1 | 

\Biggl( 
 - e - (\lambda +h)\alpha 

\lambda + h

\bigm| \bigm| \bigm| \bigm| A
0

+

\int A

0

\int A

a

e - (\lambda +h)(\alpha  - a) | fE2(a)| d\alpha da

\Biggr) 

\leq | fE1
| 

\lambda + h
+

\| fE2
\| L1

\lambda + h
for \lambda > - h.
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MODELING IMMUNITY TO MALARIA WITH A PDE FRAMEWORK 1121

The estimate for the susceptible components requires use of the assumption (H5),
which guarantees that essinf\alpha \in [0,A)\eta (\alpha )\nu p(\alpha ) =: \eta > 0. Hence

\| \widetilde SH\| L1 \leq | fS1
| 

\lambda + \eta 
+

\| fS2
\| L1

\lambda + \eta 
for \lambda > - \eta .

Choose \epsilon \ast :=min\{ \mu M , \eta , h, rA, rD,w,1/de,1/dm,1/d\nu \} , and let \lambda > - \epsilon \ast . Then, \| (\lambda  - 
\scrA ) - 1f\| \leq \| f\| /(\lambda + \epsilon \ast ), and hence

\| (\lambda  - \scrA ) - 1\| \leq 1

(\lambda + \epsilon \ast )n
for all n\in \BbbN .

It is straightforward to show that \scrF obeys condition (iii). The Lipschitz condition on
\scrF follows from the Lipschitz conditions on f , \phi , \rho , and \psi , and the linear boundedness
estimate follows from the boundedness of the human/mosquito components and the
coefficients of the system.

The following result is a consequence of Theorems 2.3 and 3.2 from Thieme [52].

Theorem A.1. If the conditions
(a) \lambda (\lambda  - \scrA ) - 1 maps C to C for \lambda sufficiently large,
(b) 1

hdist (\vee + h\scrF (\vee );C)\rightarrow 0 as h \downarrow 0 for all \vee \in C0,
hold, then there exists a unique continuous solution to (A.1) with values in C0. More-
over, the map U : \BbbR + \times C0 \mapsto \rightarrow C0 defined by U(t, u0) := u(t) is a continuous semiflow
and satisfies an exponential Lipschitz condition, i.e.,

\| U(t, u0) - U(t, u1)\| \leq J ect\| u0  - u1\| , J \geq 1, c\in \BbbR , u0, u1 \in C0, t\geq 0.

Proof. To verify that (a) holds, note that (\lambda  - \scrA ) - 1 clearly preserves positivity
and integrability, and thus so does \lambda (\lambda  - \scrA ) - 1 for any \lambda > 0. Checking that upper
bounds on the components in C are not violated requires solving \lambda  - 1(\lambda  - \scrA )\vee = f with
\vee , f \in C. For example, for the first mosquito component, we obtain \lambda f1/(\lambda + \mu M ),
which is in [0,NM ] since \lambda /(\lambda + \mu M ) < 1 for \lambda > 0 and f1 \in [0,NM ]. The other
mosquito components work similarly for \lambda > 0. The human disease components all
follow a similar pattern. For example, computing \lambda (\lambda  - \scrA ) - 1 \widetilde EH yields

\lambda fE1
e - (\lambda +h)\alpha + \lambda 

\int \alpha 

0

e - (\lambda +h)(\alpha  - a)fE2
(a)da\leq \lambda 

\lambda + h
+ \lambda fE1

e - (\lambda +h)\alpha .

The first term on the right-hand side is less than or equal to 1 for \lambda > 0 and the
second term tends to zero as \lambda \rightarrow \infty , so \lambda (\lambda  - \scrA ) - 1 \widetilde EH < 1 for \lambda sufficiently large.

To check condition (b), form the operator \widetilde \scrF (\vee ) := \scrF (\vee ) + \gamma \vee , for \vee \in C0, and
choose \gamma > 0 sufficiently large that

(A.2) \widetilde \scrF (\vee ) :C0 \mapsto \rightarrow X+.

If such a \gamma exists, then, for any \vee \in C0,

1

h
dist (\vee + h\scrF (\vee );C) = 1

h
dist

\Bigl( 
\vee  - \gamma h\vee +h \widetilde \scrF (\vee );C

\Bigr) 
= 0 for h sufficiently small.

The second equality holds because, for a fixed \gamma guaranteeing (A.2), both \vee  - \gamma h\vee \in C
and h \widetilde \scrF (\vee )\in C for h sufficiently small. The latter inclusion follows because \widetilde \scrF (\vee )\in X+
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1122 QU ET AL.

so h \widetilde \scrF (\vee ) will be nonnegative but some components may exceed the pointwise bounds
required by C; scaling by h sufficiently small remedies this and thus (b) holds.

For \vee \in C0, \scrF (\vee ) is bounded in each human disease and mosquito component so
finding a \gamma guaranteeing (A.2) is straightforward. For example,

\scrF (SM ) + \gamma SM = - SMbM\mu 
\ast 
H

\int A

0

\Bigl( 
\beta D \widetilde DH + \beta A \widetilde AH

\Bigr) 
e - M(\alpha )d\alpha + gM + \gamma SM \geq 0

if \gamma > bM (\beta D + \beta A).

Appendix B. Calculations for the proof of Theorem 4.1. To see that
| \zeta (p)| \leq \zeta (Re(p)) for p\in \BbbC , estimate as follows:

| \scrE (\alpha ,p)| =
\int \alpha 

0

\bigm| \bigm| \bigm| e - (h+p)(\alpha  - a)
\bigm| \bigm| \bigm| \theta (a)da= \int \alpha 

0

e - (h+Re(p))(\alpha  - a)
\bigm| \bigm| \bigm| e - i Im(p)(\alpha  - a)

\bigm| \bigm| \bigm| \theta (a)da
\leq 
\int \alpha 

0

e - (h+Re(p))(\alpha  - a)\theta (a)da\leq \scrE (\alpha ,Re(p)).

It follows from the inequality above and analogous reasoning that

| \scrD (\alpha ,p)| \leq \scrD (\alpha ,Re(p)), | \scrA (\alpha ,p)| \leq \scrA (\alpha ,Re(p)).

Therefore | \zeta (p)| \leq \zeta (Re(p)), as claimed.
To see that \zeta in nonincreasing for nonnegative real arguments, observe that

\partial p\scrE (\alpha ,p) =
\int \alpha 

0

(a - \alpha )e - (h+p)(\alpha  - a)\theta (a)da\leq 0 for \alpha \geq 0, p\geq 0.

Similarly,

\partial p\scrD (\alpha ,p) = h

\int \alpha 

0

e - (rD+p)(\alpha  - a)\rho ( \widetilde C\ast 
H(a))

\partial 

\partial p
\scrE (a, p)da

+ h

\int \alpha 

0

(a - \alpha )e - (rD+p)(\alpha  - a)\rho ( \widetilde C\ast 
H(a))\scrE (a, p)da\leq 0 for \alpha \geq 0, p\geq 0,

since both terms on the right-hand side are less than or equal to zero. An analogous
calculation, relying on the inequalities above, shows that \partial p\scrA (\alpha ,p)\leq 0 for (\alpha ,p)\in \BbbR 2

+.
Therefore p \mapsto \rightarrow \zeta (p) is nonincreasing for p\in \BbbR +, as claimed.

Finally, we claimed that

lim
p\rightarrow \infty 

\scrD (\alpha ,p) = lim
p\rightarrow \infty 

\scrA (\alpha ,p) = 0 (uniformly in \alpha ).

It is straightforward to see that \scrE (\alpha ,p)\leq 1/(h+ p) and hence

\scrD (\alpha ,p)\leq h

h+ p

\int \alpha 

0

e - (rD+p)(\alpha  - a) da\leq h

(h+ p)(rD + p)
,

immediately confirming the first part of the claim. Using these estimates and per-
forming similar upper bounding on \scrA (\alpha ,p) shows that

\scrA (\alpha ,p)\leq h

(h+ p)(rA + p)
+

hrD
(h+ p)(rD + p)(rA + p)

,

and hence the second part of the claim follows immediately.
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