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Abstract: We develop and analyze a stage-progression compartmental model to study the emerging
invasive nontyphoidal Salmonella (iNTS) epidemic in sub-Saharan Africa. iNTS bloodstream infec-
tions are often fatal, and the diverse and non-specific clinical features of iNTS make it difficult to
diagnose. We focus our study on identifying approaches that can reduce the incidence of new infec-
tions. In sub-Saharan Africa, transmission and mortality are correlated with the ongoing HIV epidemic
and severe malnutrition. We use our model to quantify the impact that increasing antiretroviral therapy
(ART) for HIV infected adults and reducing malnutrition in children would have on mortality from
iNTS in the population. We consider immunocompromised subpopulations in the region with major
risk factors for mortality, such as malaria and malnutrition among children and HIV infection and
ART coverage in both children and adults. We parameterize the progression rates between infection
stages using the branching probabilities and estimated time spent at each stage. We interpret the ba-
sic reproduction number R0 as the total contribution from an infinite infection loop produced by the
asymptomatic carriers in the infection chain. The results indicate that the asymptomatic HIV+ adults
without ART serve as the driving force of infection for the iNTS epidemic. We conclude that the worst
disease outcome is among the pediatric population, which has the highest infection rates and death
counts. Our sensitivity analysis indicates that the most effective strategies to reduce iNTS mortality
in the studied population are to improve the ART coverage among high-risk HIV+ adults and reduce
malnutrition among children.
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1. Introduction

Typhoidal Salmonella and nontyphoidal Salmonella (NTS) are intracellular bacteria that cause sig-
nificant global morbidity and mortality [1]. In industrialized countries, NTS is normally associated
with zoonotic reservoirs and is transferred between humans and other animals through the fecal-oral
route. Most infected individuals experience mild gastrointestinal illness, such as nausea, vomiting, pro-
fuse watery diarrhea, and abdominal pain. The infections are usually self-limiting, and antimicrobial
treatment is not recommended for uncomplicated illness.

In Sub-Saharan Africa, in contrast to the rest of the world, a strain of NTS (ST-313) appears to
be human-adapted, becoming a predominant cause of invasive nontyphoidal Salmonella (iNTS) blood-
stream infections [2,3]. The clinical features of iNTS disease are diverse and non-specific, and diarrhea
is often absent. The symptoms range from hepatosplenomegaly to respiratory symptoms. These symp-
toms overlap with pneumonia and malaria clinical presentations in Sub-Saharan Africa, and iNTS is
often misdiagnosed. Empirical diagnosis often fails to identify and treat iNTS disease [4]. Even when
the microbiologically confirmed cases are treated with appropriate antimicrobial drugs, there is a high
case fatality of 22–47% [2, 5, 6].

The emergence of iNTS ST-313 in sub-Saharan Africa is thought to be due to the large proportion
of the African population with some degree of immune suppression or impairment caused by malnutri-
tion or comorbidity with untreated HIV and other infections [7,8]. The risk factors in children include
HIV infection, malaria, and malnutrition, and the main risk factor in adults is the advanced HIV infec-
tion. Among the HIV-infected adults, before the antiretroviral therapy era, 20–40% of survivors had
recurrence; despite the treatment, up to 25% of patients had several recurrences [5, 9].

There is some evidence showing that iNTS may have evolved to transmit from person to
person [10–12]. Moreover, asymptomatic carriers can shed NTS into the environment and infect
other children in nearby homes. These asymptomatic carriers create a reservoir of iNTS infections for
community-acquired iNTS bacteremia in children [13, 14].

Multidrug-resistant iNTS is a challenge for the local healthcare system and can be a major factor in
the high prevalence [12]. Salmonella was once susceptible to a broad range of affordable and effective
antimicrobial drugs. Recently, multidrug-resistant strains have emerged, and a large proportion of the
infection are resistant to three or more commonly available antibiotics.

Mathematical models are tools to help understand the dynamics of epidemics and guide the mitiga-
tion efforts [15, 16]. Both compartmental differential equation models and stochastic individual-based
models have been developed to clarify the zoonotic Salmonella transmission dynamics. These models
can inform public health workers and help eradicate the infection from a population. For example,
in [17], a compartmental model simulates a Salmonella Typhimurium infection in swine in Great
Britain. In this model, the infected pigs are grouped into susceptible, latent, infectious (shedder),
and carrier stage compartments. In [18, 19], Susceptible-Infectious-Recovered (SIRS) type compart-
mental models were used to simulate the transmission dynamics of Salmonella infection in dairy herds.
In [20], a multidisciplinary approach involves quantitative PCR, and probabilistic models are proposed
to study the spatial and stochastic nature of within-in host dynamics for Salmonella Typhimurium in-
fection.

Although there are many Salmonella models in animals, there are very few models for iNTS within
human populations in the developing world, such as Sub-Saharan Africa. In [21], a Susceptible-
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Infectious-Recovered type differential equation model is proposed as the first model for iNTS dy-
namics in this high-risk population, with the focus on the cost-benefit analysis for different scenarios
of diagnostic deployment and their impact on antimicrobial treatment for the patients.

We propose a staged progression ODE model to help understand the transmission dynamics of iNTS
and inform effective public health control policy. We formulate the model for an immunocompromised
population in Sub-Saharan Africa and account for different risk factors, including untreated HIV/AIDS
infections. The model accounts for multiple infection stages, including asymptomatic carriers.

After describing the proposed model (Section 2), we derive the disease basic reproduction number
and analyze how much each infection stage contributes to the spread of the iNTS (Section 3). We
then simulate a baseline scenario in Siaya County, Kenya (Section 4.1), characterize the impact of
the different risk factors towards the local epidemic through sensitivity analysis, and inform potential
mitigation strategies (Section 4.2).

2. Staged progression model with treatment

Our staged progression compartmental model (Figure 1) accounts for two infection stages and two
treatment stages with different outcome statuses. The susceptible population, S, is infected at a rate of
infection λ and progresses to an early-stage infection, I1, with mild symptoms. Some of the infected
individuals receive home treatment, entering stage IHT (at rate γ1H). The outcome of home treatment
include recovered R (at rate γHR), asymptomatic A (at rate γHA), or severe infection status I2 (at rate γH2)
with acute/serious symptoms. The infected people not receiving home treatment enter severe infection
I2 directly at rate γ12.

Some of the severely sick population I2 are treated in a medical facility and enter the compartment
IMT at the rate γ2M. They then either recover and enter R at the rate γMR, die and enter D at rate γMD, or
become an asymptomatic carrier A at rate γMA. We assume that those with severe symptoms who do
not receive medical treatment will suffer mortality at the rate γ2D. The recovered population, R, obtains
some temporary immunity from the infection and becomes susceptible S again at the rate γRS .

Home treatment IHT is common in Sub-Saharan Africa, and antibiotics are easily available over the
counter without a prescription for self-treatment. Inappropriate use of these drugs may contribute to
the emergence of multidrug-resistant phenotypes of iNTS [13]. Also, less expensive generic drugs of
variable quality for treating bacterial infections could also be contributing to the increasing resistance.
Although we do not explicitly model the emergence of resistant strains in the current model, we will
be considering these factors in future versions of the model.

In Sub-Saharan Africa, iNTS infection rates peak first in young children ď 5 years old and then
again in adults 25–40 years old [22]. The first peak is related to malaria, malnutrition, and HIV for
young children, while the second peak is due to advanced HIV infection in the adults.

We account for the immunocompromised adults with advanced HIV infection who become asymp-
tomatic carriers A. These asymptomatic carriers feel well but are still transmitting the pathogen. They
are often receiving effective home treatment in early-stage infection IHT or medical treatment in se-
vere infection IMT , and they still retain a relatively low pathogen load after the treatment. If these
infected carriers are on Antiretroviral Therapy (ART) HIV treatment, then their immune system is usu-
ally strong enough to fight off the iNTS bacteria. However, if they are not on ART, then eventually
the bacterial load increases until it breaks down their immune system, and they become sick again
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Figure 1. Disease progression model for iNTS with treatments. The red boxes
(I1, IHT , I2, A) are infectious stages, and the blue box (IMT ) is infected but not infectious.
The progression rate from compartment j to compartment k is given by γ jk.

Figure 2. Branching process for disease progression model for iNTS. The red boxes
(I1, IHT , I2, A) are the infectious stages, and the blue box (IMT ) is infected but not infec-
tious. Branching probability P jk is the fraction of people who progress from state j to state
k. The progression rates γ jk in Figure 1 are defined by Eq (2.2) using the branching fractions
P jk and the time spent in each compartment.

(at rate γA1). Although these asymptomatic carriers feel well, they are still infectious and constantly
shedding the disease into the environment without being detected. Thus, these asymptomatic carriers
act as a reservoir for the iNTS emergence and transmission [8].

Because the iNTS prevalence is highest in age groups ď 5 and 25–40 years old, we explicitly
account for these age groups in the model. The older age group also can capture the impact of asymp-
tomatic HIV-infected adults. We divide the population into the following groups, denoted by upper
index κ: HIV- adults (κ “ 1), HIV+ with ART adults (κ “ 2), HIV+ not treated adults (κ “ 3), and
young children ď 5 years old (κ “ 4). For each group κ, we model the disease dynamics using the
same framework shown in Figure 1 but with different progression rates between the compartments. For
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Table 1. State variables for compartments.

Compartment Description

S κ Susceptible
Iκ1 Infected people with mild symptoms
IκHT Infected people who do home treatment
Iκ2 Infected people with severe symptoms
IκMT Infected people who are admitted to medical facilities
Rκ People recover from the infection (with temporary immunity)
Aκ People with asymptomatic carriage of the infection (go back home)
Dκ People die from the infection
Group index κ
κ “ 1 HIV- adults, 25–40 years old
κ “ 2 HIV+ adults, on ART, 25–40 years old
κ “ 3 HIV+ adults, not on ART, 25–40 years old
κ “ 4 Children, ď 5 years old

simplicity of notation, we omit the group index κ when the formulas are the same for all the groups
unless there could be some ambiguity in the notation. A description of all the state variables is in
Table 1.

2.1. Progression rates and branching process

The rates that people advance between the compartments in Figure 1 depend on the average time
people spend in each compartment and the branching probabilities which are distributed across all
possible downstream compartments (Figure 2).

For each group κ, we first define the branching probabilities, Pκ
i j, as the fraction of people who

progress from state i to state j. These exit probabilities sum to unity (Eq (2.1)) and, even though
this constraint could reduce the number of variables, we keep all of them in the equations to simplify
the notation. Then, we define τκi as the average time spent in a state i. Assuming an exponential
distribution for the time spent in a stage i, we can derive the progression rates γκi j in terms of the ratios
of the branching probabilities and time spent in the upstream stage τκi , as shown in Eq (2.2).

We find that this approach is more intuitive and less prone to errors than defining the progression
rates directly, especially when having multiple pathways from one compartment to another.

PS 1 ` PS N “ 1, P12 ` P1H ` P1N “ 1, P2D ` P2M ` P2N “ 1, PA1 ` PAN “ 1,
PMR ` PMD ` PMA ` PMN “ 1, PHR ` PHA ` PH2 ` PHN “ 1, PRS ` PRN “ 1.

(2.1)

γ1H “ P1H{τ1, γHR “ PHR{τH, γMR “ PMR{τM,

γ12 “ P12{τ1, γHA “ PHA{τH, γMD “ PMD{τM,

γ2D “ P2D{τ2, γH2 “ PH2{τH, γMA “ PMA{τM,

γ2M “ P2M{τ2, γRS “ PRS {τR, γA1 “ PA1{τA,

(2.2)
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µ “ P1N{τ1 “ PHN{τH “ P2N{τ2 “ PMN{τM “ PAN{τA “ PRN{τR (2.3)

2.2. Force of infection

We model the force of infection rates for all the susceptible groups, λκ, as the summation of the
sources of infection from each infectious stage among all the groups:

λκ “ cκ βκ
ř4

`“1 c`pI`1 ` I`HT ` I`2 ` A`q
ř4

`“1 c`pS ` ` I`1 ` I`HT ` I`2 ` A` ` R`q
, κ “ 1, . . . 4, (2.4)

where cκ is the number of contacts that an individual in group κ has per day. We assume a homoge-
nously mixing population and that the proportion of the contacts with an infectious person is approx-
imated by the last term in the Eq (2.4). This proportion is defined by dividing the total number of
contacts from the infectious population per day (the numerator) by the total number of contacts from
all the active population per day (the denominator). We have assumed that the infectious people do
not change their behavior until being admitted to the medical facility (stage IMT ). Once in a medical
facility, then we assume they no longer have contacts with the general population and are not part of
force of infection.

For simplicity and the lack of data, in our study, we assume that contacts in different groups are
equal, c “ cκ for κ “ 1, . . . 4. Under this assumption, the force of infection in Eq (2.4) can be reduced
to

λκ “ c βκ
ř4

`“1 I`1 ` I`HT ` I`2 ` A`

ř4
`“1 S ` ` I`1 ` I`HT ` I`2 ` A` ` R`

, κ “ 1, . . . 4.

We assume that the transmissibility per contact βκ for each subpopulation is approximately constant
through different infection stages. For different groups κ “ 1, ¨ ¨ ¨ , 4, the transmissibility βκ varies.
This difference reflects the average level of immune-competency of susceptible adults or children in
the corresponding group.

Following the analysis in Feasey et al. [23], within the young child group (κ “ 4), since the risk
factors, such as malaria and HIV, are at endemic state in the studying region, we formulate the averaged
susceptibilities as the contribution of prevalences of these factors,

β4
“ β4

0p0.56σMA ` 0.25σC
HIV ` 0.2σMNq,

where σMA and σMN are the prevalence of malaria and malnutrition, respectively, in children under age
five. The coefficient σC

HIV is the HIV prevalence in the child group, which depends on the fraction of
non-ART-treated HIV adults (1´ σART ) and the maternal transmission rate (σMAT ),

σC
HIV “ σA

HIVp1´ σART qσMAT .

This approach results in an estimated prevalence of 2.4% in children in the baseline scenario. There is
very little correlation between iNTS incidence and ART treatment in children [7,24], and it is neglected
in the model.
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The resulting model for iNTS transmission among high-risk cohorts in Sub-Saharan Africa is ex-
pressed as a system of differential equations for each population group κ,

9S κ
“ µκpS κ

0 ´ S κ
q ´ λκS κ

` γκRS Rκ ,

9Iκ1 “ λκS κ
` γκA1 Aκ

´ pγκ1H ` γκ12q Iκ1 ´ µκIκ1,
9IκHT “ γκ1H Iκ1 ´ pγ

κ
HR ` γκHA ` γκH2q IκHT ´ µκIκHT ,

9Iκ2 “ γκH2IκHT ` γκ12Iκ1 ´ pγ
κ
2D ` γκ2MqI

κ
2 ´ µκIκ2, κ “ 1, . . . 4.

9IκMT “ γκ2MIκ2 ´ pγ
κ
MR ` γκMD ` γκMAqI

κ
MT ´ µκIκMT ,

9Aκ
“ γκHA IκHT ` γκMA IκMT ´ γκA1 Aκ

´ µκAκ,

9Rκ
“ γκHR IκHT ` γκMR IκMT ´ γκRS Rκ

´ µκRκ,

9Dκ
“ γκ2DIκ2 ` γκMDIκMT ,

(2.5)

all the progression rates are defined in Eqs (2.2) and (2.3), and all the model parameters are summarized
in Table 2.

When there is no iNTS epidemic present in the population, the susceptible population S κ is balanced
at a steady state level S κ

0 through a constant birth and natural removing rate µκ. We consider the
migration (removal) rate µκ in the equations to account for non-iNTS mortality and the natural aging
out of the age cohort.

3. Basic reproduction number and steady states

We use the next generation matrix approach to define the basic reproduction number R0 for the
system Eq (2.5). The resulting formula can be expressed as a weighted sum of the subgroup basic
reproduction numbers, Rκ0, κ “ 1, . . . , 4. The subgroup basic reproduction numbers, Rκ0, must account
for recurring infections, and we are able to explain the formula in terms of the sum of terms in an
infinite recurrence relationship.

3.1. Calculations of basic reproduction number R0

Following the next generation matrix approach, we consider the equations in Eq (2.5) that are as-
sociated with the infected groups: X “ pX1,X2,X3,X4qT , where Xκ “ pIκ1, I

κ
HT , I

κ
2, I

κ
MT , A

κq. Next, the
right-hand sides of equations for the infected groups are split into the infection part, F κ, and transition
partVκ:

d
dt

¨

˚

˚

˚

˚

˝

Iκ1
IκHT
Iκ2

IκMT
Aκ

˛

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˝

c βκ
ř4
`“1 I`1`I`HT `I`2`A`

ř4
`“1 S ``I`1`I`HT `I`2`A``R`

S κ

0
0
0
0

˛

‹

‹

‹

‹

‹

‚

´

¨

˚

˚

˚

˚

˝

pγκ1H ` γκ12q Iκ1 ´ γκA1 Aκ ` µκIκ1
pγκHR ` γκHA ` γκH2q IκHT ´ γκ1H Iκ1 ` µκIκHT
pγκ2D ` γκ2Mq Iκ2 ´ γκH2 IκHT ´ γκ12 Iκ1 ` µκIκ2
pγκMR ` γκMD ` γκMAq IκMT ´ γκ2M Iκ2 ` µκIκMT

γκA1 Aκ ´ γκHA IκHT ´ γκMA IκMT ` µκAκ

˛

‹

‹

‹

‹

‚

“: F κ
´Vκ, κ “ 1, . . . , 4.
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Table 2. Estimated event probabilities and parameters for the branching process. Although
we have extensively reviewed the literature and chose parameters that best describe the lo-
cal population cohorts at hand, we could not identify solid references for the parameters
referenced by EO˚ (expert opinion). These parameter values are based on extensive discus-
sions with experts and their studies [36–39] in University of New Mexico-Kenya Programs
in Siaya, Kenya, Africa.

Description
HIV-
Adults
pκ “ 1q

HIV+ ART
pκ “ 2q

HIV+ no
ART
pκ “ 3q

Children
pκ “ 4q Reference

cβκ Transmission rate 4.6ˆ 10´3 0.092 0.257 0.232 Calibrated
µκ Migration rate (mortality+aging) per day 2.0ˆ 10´4 3.7ˆ 10´4 9.2ˆ 10´4 5.8ˆ10´4 Derived

- Mortality rate per 1000 people per year 5.02 70 270 10.4 [25, 26]
- Aging rate per year 1/15 1/15 1/15 1{5 Derived

S κ
0 Population size (Siaya County) 106202 19171 10784 141752 [27]

- Incidence, per 100,000 population per year 37 739 2070 1870 [28, 29]
σMA Prevalence of malaria epidemic in children - - - 2% [30]
σMN Prevalence of malnutrition in children - - - 40% [26]
σHIV Prevalence of HIV epidemic σA

HIV“22% σA
HIV“22% σA

HIV“22% σC
HIV“2% EO˚

σART Coverage of ART for HIV adults 64% - EO˚

σMAT Maternal trans. rate for non-ART adults - - 30% - [31]

Without the effect of migration, the raw estimates for disease parameters...

P0
1H Fraction of I1 do self-treatment 20% 20% 20% 50% EO˚

P0
12 Fraction of I1 do not do self-treatment 80% 80% 80% 50% EO˚

P0
HR Fraction of IHT recover 50% 40% 10% 50% EO˚

P0
HA Fraction of IHT become asymp. - 4% [32] 35%* - EO˚

P0
H2 Fraction of IHT become I2 50% 56% 55% 50% EO˚

P0
2M Fraction of I2 do medical-treatment 90% 90% 90% 90% EO˚

P0
2D Fraction of I2 do not get medical-treatment 10% 10% 10% 10% EO˚

P0
MD Fraction of IMT die 11% [33] 11% [33] 47% [6] 22% [34] EO˚

P0
MA Fraction of IMT become asymp. - 4% 35%* - EO˚

P0
MR Fraction of IMT recover 89% 85% 18% 78% EO˚

τ0
1 Time spent in I1 (infectedÑ lightly sick) 1 d 1 d 1 d 1 d EO˚

τ0
H Time spent in self-treatment 3 d 3 d 3 d 3 d EO˚

τ0
2 Time spent in I2 (lightly sickÑ heavily sick) 4 d 4 d 4 d 4 d EO˚

τ0
M Time spent in medical-treatment 7 d 7 d 7 d 7 d EO˚

τ0
R Time of immunity period after recovery 1 yr 1 yr 1 yr 2 m EO˚

τ0
A Time of being asymptomatic - 59 d [32]

45 d [32]
(60 d [35])

- EO˚

The adjusted parameter values for migration...

τ˚ Time spent in stage ˚ p1{τ0
˚ ` µκq´1 Derived

P˚N Fraction of migration at stage ˚ µκ ˆ τ˚ Derived
Pi j Fraction of people at stage i move to stage j P0

i j ˚ p1´ P˚Nq Derived
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These equations are then linearized at the disease-free equilibrium (DFE) Xκ
0 “

pS κ
0, 0, 0, 0, 0, 0, 0q, κ “ 1, 2, 3, 4. That is, we define Jacobian matrices of F :“ pF 1;F 2;F 3;F 4q and

V :“ pV1;V2;V3;V4q evaluate them at the DFE to obtain

JF :“
BF

BX
“

¨

˚

˚

˚

˝

D1
F

D1
F

D1
F

D1
F

D2
F

D2
F

D2
F

D2
F

D3
F

D3
F

D3
F

D3
F

D4
F

D4
F

D4
F

D4
F

˛

‹

‹

‹

‚

and JV :“
BV

BX
“

¨

˚

˚

˝

D1
V

D2
V

D3
V

D4
V

˛

‹

‹

‚

,

where

Dκ
F
“

¨

˚

˚

˚

˚

˝

ϕκ ϕκ ϕκ 0 ϕκ

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

˛

‹

‹

‹

‹

‚

, ϕκ “ cβκ
S κ

0

N0
, κ “ 1, ¨ ¨ ¨ , 4, N0 “

4
ÿ

κ“1

S κ
0,

and

Dκ
V “

¨

˚

˚

˚

˚

˝

γκ12 ` γκ1H ` µκ 0 0 0 ´γκA1

´γκ1H γκH2 ` γκHA ` γκHR ` µκ 0 0 0
´γκ12 ´γκH2 γκ2D ` γκ2M ` µκ 0 0

0 0 ´γκ2M γκMA ` γκMD ` γκMR ` µκ 0
0 ´γκHA 0 ´γκMA γκA1 ` µκ

˛

‹

‹

‹

‹

‚

.

The basic reproduction number is calculated as the spectral radius of the next generation matrix
JF J´1

V
. Note that the matrix JV is defined in terms of the transition rates γ˚, and the next generation

matrix is defined in terms of its inverse, J´1
V

. Thus, the resulting formulas for R0 are better understood
in terms of τ˚ and P˚ as defined in Eqs (2.1) to (2.3).

After long algebraic manipulations, we obtain

R0 :“ Spectral Radius of pJF J´1
V
q “

4
ÿ

κ“1

S κ
0

N0
Rκ0, (3.1)

where

Rκ0 “ cβκ
τκ1 ` Pκ

1Hτ
κ
H `

`

Pκ
12 ` Pκ

1HPκ
H2

˘

τκ2 `
`

Pκ
1HPκ

HA ` Pκ
1HPκ

H2Pκ
2MPκ

MA ` Pκ
12Pκ

2MPκ
MA

˘

τκA

1´ Pκ
A1

`

Pκ
1HPκ

HA ` Pκ
1HPκ

H2Pκ
2MPκ

MA ` Pκ
12Pκ

2MPκ
MA

˘ . (3.2)

The obtained basic reproduction number R0 Eq (3.1) for the entire population is a weighted average
of the contributions from each population group (Rκ0) with the weights being the fractions of the pop-
ulation in the corresponding group. Since we partition the population into groups of subpopulation
with different transmission parameters, our model structure is comparable to the differential infectivity
model studied in [40], where the basic reproduction number has a similar pattern of weighted average.
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3.2. Interpretation of basic reproduction numbers Rκ0 for subpopulation

We have written the basic reproduction number Rκ0 in terms of branching probabilities rather than
progression rates, and this allows us to give more intuitive interpretations of the quantity. The factor cβκ

in the reproduction number represents the number of contacts per day times the probability of infection
per contact with someone in age-group κ. Together with the terms in the numerator of Eq (3.2), it gives
the total contribution of infection from different infectious stages (detailed later).

The denominator in the formula Eq (3.2) for Rκ0, however, can look perplexing at first. This can be
interpreted as a scaling factor to account for the possibility that the asymptomatic individuals can have
recurrent infection (A Ñ I1) and continue shedding to the population.

From Eq (3.2), we recognize that the coefficient factors for τκ˚ represent the probabilities of transi-
tions between the initial infected stage Iκ1 and the corresponding infectious stage, that is

Rκ0 “ cβκ
τκ1 ` Prob pIκ1 Ñ IκHT q τ

κ
H ` Prob pIκ1 Ñ Iκ2q τ

κ
2 ` Prob pIκ1 Ñ Aκq τκA

1´ Prob pIκ1 Ñ AκqPκ
A1

, (3.3)

where

Prob pIκ1 Ñ IκHT q “ Pκ
1H, Prob pIκ1 Ñ Iκ2q “ Pκ

12 ` Pκ
1HPκ

H2, (3.4)

Prob pIκ1 Ñ Aκ
q “

$

’

&

’

%

Route #1 Iκ1 Ñ IκHT Ñ Aκ, Pκ
1HPκ

HA,

Route #2 Iκ1 Ñ IκHT Ñ Iκ2 Ñ IκMT Ñ Aκ, Pκ
1HPκ

H2Pκ
2MPκ

MA,

Route #3 Iκ1 Ñ Iκ2 Ñ IκMT Ñ Aκ, Pκ
12Pκ

2MPκ
MA,

“ Pκ
1HPκ

HA ` Pκ
1HPκ

H2Pκ
2MPκ

MA ` Pκ
12Pκ

2MPκ
MA.

When being infectious, one first spends τκ1 amount of time in stage Iκ1, then, with probability Prob pIκ1 Ñ
IκHT q, one progresses to IκHT stage and spend τκH amount of time there. Similarly, with probability
Prob pIκ1 Ñ Iκ2q and Prob pIκ1 Ñ Aκq, one progresses to stages Iκ2 and Aκ and spends τκ2 and τκA amount
of time, respectively. For convenience, we define the expected duration of time one spends in a stage
∆ as

sτκ∆ “ Prob pIκ1 Ñ ∆qτκ∆, ∆ P tIκ1, I
κ
HT , I

κ
2, I

κ
MT ,R

κ, Aκ
u, (3.5)

where the probabilities Prob pIκ1 Ñ IκHT q, Prob pIκ1 Ñ Iκ2q, and Prob pIκ1 Ñ Aκq are defined in Eq (3.4),
and

Prob pIκ1 Ñ Iκ1q “ 1,
Prob pIκ1 Ñ IκMT q “ Prob pIκ1 Ñ Iκ2q Pκ

2M “ pP
κ
12 ` Pκ

1HPκ
H2qP

κ
2M, (3.6)

Prob pIκ1 Ñ Rκ
q “ Pκ

1HPκ
HR ` Pκ

1HPκ
H2Pκ

2MPκ
MR ` Pκ

12Pκ
2MPκ

MR.

Then the average infectious time in one disease cycle, sτκ
I
, is

sτκ
I

:“ sτκ1 ` sτκH ` sτκ2 ` sτκA. (3.7)

Thus, the average number of new secondary cases that an infectious individual could produce in one
disease cycle is the summation of all the new cases in four infectious compartments

pRκ0q
cycle :“ cβκ sτκ

I
.
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Since the basic reproduction number accounts for all the secondary infections that happened during
the entire infection duration, we need to include the recurrent infection when an asymptomatic person
Aκ becomes Iκ1 again. Note that this is different from being reinfected after recovery (Rκ Ñ Iκ1), which
is considered as a separate infectious period. The probability of having a recurrent infection is

Pκγ “ Prob pI cycle 1
1 Ñ Aq ¨ Prob pA Ñ I cycle 2

1 q “ Prob pIκ1 Ñ Aκ
q ¨ Pκ

A1. (3.8)

Then, with probability Pκγ, the infected individual would have another infectious onset and create
another pRκ0q

cycle number of new infections in the second cycle. This process may repeat again and
again with diminishing probability, and the R0 of the entire process is the summation of the resulting
infinite geometric series,

Rκ0 “ pR
κ
0q

cycle
loomoon

1st cycle of infection

`Pκγ pR
κ
0q

cycle
looooomooooon

2nd cycle

` ¨ ¨ ¨ ` pPκγq
n´1
pRκ0q

cycle
loooooooomoooooooon

nth cycle

` ¨ ¨ ¨ “
pRκ0q

cycle

1´ Pκγ
“ Eq (3.3).

This recovers the basic reproduction number obtained through the next generation matrix approach in
Eq (3.3).

3.3. Endemic steady state

Setting the right-hand side of the system Eq (2.5) and substituting all the rates by probabilities as
defined in Eqs (2.1) to (2.3), we obtain the endemic steady state for each subpopulation group:

pIκ1qEE “
µκpS κ

0 ´ S κ
EEq

1´ Pκθ
sτκ1 , pIκHT qEE “

µκpS κ
0 ´ S κ

EEq

1´ Pκθ
sτκH ,

pIκ2qEE “
µκpS κ

0 ´ S κ
EEq

1´ Pκθ
sτκ2 , pIκMT qEE “

µκpS κ
0 ´ S κ

EEq

1´ Pκθ
sτκM , (3.9)

pAκ
qEE “

µκpS κ
0 ´ S κ

EEq

1´ Pκθ
sτκA , pRκ

qEE “
µκpS κ

0 ´ S κ
EEq

1´ Pκθ
sτκR ,

where sτκ
∆
’s are defined in Eq (3.5) and

Pκθ “ Prob pIκ1 Ñ Aκ
qPκ

A1 ` Prob pIκ1 Ñ Rκ
qPκ

RS

is the probability of an infected individual to survive the infection and becomes either asymp-
tomatic (first term) or recovered (second term), and the susceptible subpopulation at endemic state,
pS 1

EE, S
2
EE, S

3
EE, S

4
EEq, is the non-trivial and positive solution to the following system

aipS i
0 ´ S i

EEq

Ri
0 S i

EE

“
a jpS j

0 ´ S j
EEq

R
j
0 S j

EE

, 1 ď i ‰ j ď 4,

4
ÿ

κ“1

S κ
EEp1´ R

κ
0 ´ dκq ` dκS κ

0 “ 0,

(3.10)

where the coefficients

aκ “
sτκ
I
µκ

1´ Pκθ
, dκ “

psτκ
I
` sτκRq µ

κ

1´ Pκθ
, κ “ 1, ¨ ¨ ¨ , 4,

Mathematical Biosciences and Engineering Volume 18, Issue 2, 1529–1549.



1540

the coefficient Rκ0 is defined in Eq (3.2), and S κ
0 is the DFE.

By using a combination of probabilities rather than rates, we interpret the obtained endemic steady
states: At the endemic steady state, the migration-in rate, µκpS κ

0 ´ S κ
EEq, needs to balance out the

migration-out rate, which is a product of the total infected population, IκEE, and averaged death rate,
p1´ Pκθq{psτ

κ
I
` sτκM ` sτκRq. Thus, at the steady state, we obtain the balanced equation

µκpS κ
0 ´ S κ

EEq “
1´ Pκθ

sτκ
I
` sτκM ` sτκR

IκEE ,

and the total balanced infected population (people who has been infected) is

IκEE “
µκpS κ

0 ´ S κ
EEq

1´ Pκθ
psτκ
I
` sτκM ` sτκRq .

This population IκEE is then distributed to different infected compartments, proportional to the expected
infection time span spent (sτκ

∆
) in that compartment as defined in Eq (3.5).

4. Numerical examples

4.1. Baseline model calibration & simulation

The disease transmission rates, cβκ, are difficult to quantify directly and need to be estimated based
on more observable quantities. We calibrate the model using the incidence information in Table 2,
which describes the situation in Siaya County, Kenya.

The migration rate, µκ (per capita per day), includes both the baseline (non-iNTS related) death rate
and the aging rate, and we assume there is no significant spatial migration in/out of the studied region in
this age range [41]. For example, for the children under age 5 (κ “ 4), µ4 “ p10.4{1000` 1{5q{365 «
5.8ˆ 10´4.

To estimate the transmission rate, cβκ, we match the incidences at the endemic state. To this end,
we setup a nonlinear system,

pλκqEE “ cβκ

4
ř

κ“1
pIκ1qEE ` pIκ2qEE ` pIκHT qEE ` pAκqEE

4
ř

κ“1
S κ

EE ` pI
κ
1qEE ` pIκ2qEE ` pIκHT qEE ` pAκqEE ` pRκqEE

“ cβκ

4
ř

κ“1
aκpS 0 ´ S κ

EEq

4
ř

κ“1
S κ

EE ` dκpS 0 ´ S κ
EEq

“
incidence for group κ

365ˆ 100, 000
, κ “ 1, ¨ ¨ ¨ , 4,

and the four equations from the system Eq (3.10), and solve for the eight unknowns: the transmission
rates cβκ (product as one variable) and endemic states for susceptible S κ

EE, κ “ 1, ¨ ¨ ¨ , 4.
In 2002–2003, an emerging iNTS epidemic took about three years to peak in a naive West African

population [34,42]. Although the reported estimates for the iNTS disease burden are known to be gross
underestimates of the actual incidence, they probably capture the underlying trend of the epidemic.
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We assumed that approximately 20% of the cases were reported. We considered other underreporting
factors to verify that the qualitative aspects of predictions were fairly insensitive to this assumption.

We initialized the system of equations by infecting one person and letting the infection spread
until 0.1% of the population was infected. We then used this balanced distribution of infected and
recovered populations for the t “ 0 initial conditions for the model. This balanced initial condition
gives a naturally distributed infection across different compartments as if the epidemic had emerged
from a single infection. The initialization also avoids nonphysical oscillations that can occur when the
population is not realistically distributed among the different compartments in the initial conditions.

Figure 3. Baseline simulations with 0.1% initial infection in the population. The child group
has the most infected cases (top left) and most deaths (top right), and the HIV+ without
ART adult group has the highest per capita infection counts (bottom left) and comparable
incidence rates with the child group (bottom right).

To study the population cohort that are most impacted by the pathogen, we simulate the infection
and death-count curves for different groups in one epidemic. At the baseline scenario, the child group
(κ “ 4) suffers the most from the epidemic as it has the most infection cases throughout the course of
the epidemic (Figure 3 top left) and the most accumulative deaths (top right) among all the population
cohorts.

On the other hand, the HIV adult without ART group (κ “ 3) has the highest per capita infection
rate (bottom left), which is about four times higher than the rate in children. The incidence rates are
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Figure 4. Infectious population by stages near the peak of the epidemic. The I2-stage chil-
dren are the largest infectious population by infection stages (left). However, the asymp-
tomatic HIV+ adults without ART are the largest source of infection, creating most cases in
time (right). This adult cohort serves as the driving force of the epidemic that leads to the
worst outcome in children. This trend remains the same throughout the epidemic.

comparable between the HIV non-ART adults and child groups (bottom right), which suggests that
HIV no-ART adults have a longer infection course than the children have. In fact, we can estimate the
average lengths of infection periods, sτκ

I
` sτκM (defined in Eqs (3.5) and (3.7)), for HIV no-ART adults

and children, which are about 26 days and 10 days, respectively. The major difference is due to the
substantial period that HIV no-ART adults spend in the asymptomatic stage, which is about 15 days
on average.

We then study the pathogen shedding at different stages to understand the major source of infec-
tion. Among all the population cohorts, the child group has the most infectious counts in all its stages
(Figure 4 left). However, when we also consider the infectious time spent at different stages, then
the asymptomatic HIV+ adults without ART gives the most time-weighted infectious counts (Fig-
ure 4 right).

The critical role that HIV+ adults without ART play can also be seen in the basic reproduction
numbers for different subgroups (Table 3). We see that among all the population cohorts (column 2
of Table 3), HIV+ no ART adults contribute the most in terms of Rκ0. Furthermore, if breaking this
contribution to different infectious stages (row 4 of Table 3), the asymptomatic stage of the HIV+

no ART adult group (column 6) has the largest value (6.31). This indicates that these asymptomatic
untreated HIV adults serve as the main driving force of the iNTS epidemic.

4.2. Sensitivity analysis and mitigation strategies

We are interested in understanding how the risk factors could affect the epidemic course and explor-
ing potential mitigation strategies for iNTS disease control. The sensitivity analysis identifies impactful
model parameters and quantifies the relative changes in the quantities of interest (QOIs) with respect to
the perturbation on the model parameters of interest (POIs) [43]. We define the normalized sensitivity
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Table 3. At the baseline scenario, the basic reproduction number for the entire population
is R0 “ 1.08, which is a weighted average of the basic reproduction number from each
cohort, Rκ0 (column 2). For each cohort, Rκ0 is the summation of the contribution from all the
infectious stages (columns 3–6). The most infectious group is the asymptomatic HIV+ no
ART adults.

Rκ0 I1 IHT I2 A

HIV- adults (κ “ 1) 0.03 5ˆ 10´3 3ˆ 10´3 0.02 -
HIV+ART adults (κ “ 2) 0.77 0.10 0.06 0.37 0.24
HIV+ no ART adults (κ “ 3) 8.47 0.41 0.25 1.50 6.31
Children (κ “ 4) 1.35 0.25 0.37 0.74 -

Table 4. Local (normalized) sensitivity indices, Sq
p, for QOIs (top labels) with respect to

POIs (left column). For each QOI, the index for the most sensitive POI is in bold. For all
the QOIs considered, the prevalence of malnutrition, σMN , and coverage of ART for HIV+

adults, σART , are the most sensitive parameters. The peaking time gives a nonlinear response
to the perturbation in model parameters (right plot) with the largest indices. Hence, it is the
most unpredictable quantity.

Normalized sensitivity indices

POI
QOI

R0
Asymp. no-ART Peaking Total infect. Total infect. Accum.

adults (peak) time at peak at endemic deaths
σMN 0.53 5.84 ´5.94 10.86 7.12 7.67
σART ´0.56 ´7.59 5.01 ´9.98 ´6.70 ´7.25
σHIV 0.39 5.21 ´3.54 7.18 4.88 5.20
σMA 0.07 0.82 ´1.24 1.52 1.00 1.07
σMAT 0.04 0.43 ´0.42 0.81 0.53 0.57
Trend Linear Linear Nonlinear Linear Linear Linear
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index of a QOI, qppq, with respect to a POI, p, as

Sq
p “

p
q
ˆ
Bq
Bp
.

This index measures a percentage response: if the parameter p changes by x%, then the quantity
q changes by Sq

p ˆ x%. The sign of the index indicates if the response is positively or negatively
correlated.

We first consider the QOIs that are related to the source of the infection: the R0 and the population
size of asymptomatic non-ART adults, as suggested by the baseline simulations in Section 4.1. The
first two columns of the sensitivity indices in Table 4 show that the coverage of ART for the HIV+

adults (σART ) is the most sensitive risk factor: a 1% increase in the ART coverage would reduce the R0

by 0.56% (from R0 “ 1.08 Ñ 1.074), and the total number of asymptomatic HIV without ART would
be reduced by 7.59% (8 fewer people). This suggests that it would be the most effective to control the
source of the infection by improving the coverage of the ART among the HIV-infected adults.

The changes in R0 (0.56%) and asymptomatic HIV+ no-ART (A3 group) adults (7.59%) may look
like a small perturbation of the baseline scenario. However, each of these A3 adults may create a super
spreading event: the A3 group consists around 12% of the infected population and are responsible for
74% of the infection (infection cases weighted by the R0’s in Table 3). Thus, it is critical to reduce this
highly infectious group and control the silent shedding.

Among the QOIs related to the disease dynamics and outcomes (columns 3–5 in Table 4), the
prevalence of malnutrition in children (σMN) is the most sensitive factor: by lowering 1% of the mal-
nutrition prevalence, the total infected population at the peak would be reduced by 10.86% (81 fewer
cases, including 68 children), and the accumulative disease-induced deaths through one outbreak sea-
son (the endemic state reached around year 8) could be reduced by 7.67% (2450, including 488 adults
and 1962 children). Moreover, σMN is the second most sensitive parameter for the other two QOIs
(columns 1–2). This suggests that it would be the most effective to reduce malnutrition prevalence in
children, who are the largest high-risk population in our baseline simulation, in order to both control
the additional shedding to the community and limit human mortality from the epidemic.

Moreover, the peaking time of the epidemic (column 3 in Table 4) has highly sensitive and nonlinear
responses to the changes in all the model parameters (see figure below the table). The large magnitudes
of the indices suggest that even a small reduction of the risk factors can delay the start of an epidemic,
which can be considered as potential strategies to relieve pressure on the healthcare system. The
nonlinearity in the response curves indicates that the peaking time of an epidemic will be hard to
predict.

5. Conclusions

We create and analyze a stage-progression compartmental model to investigate the iNTS epidemic
emerging in sub-Saharan Africa. Our model considers multiple age groups in a population with dif-
ferent levels of immune-competence that are associated with the complex risk factors circulating in
the region, including the HIV infection, availability of antiretroviral therapy, and high prevalence of
malaria infection and malnutrition in children under age 5.

We defined the progression between the infection stages as a function of the branching probabilities
at each decision stage and the average time spent within the stage. This approach allows a more
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straightforward parameter estimation based on the epidemiology literature than directly defining the
progression rates. It also gives a more intuitive interpretation during the model analysis.

We derived the basic reproduction number R0 as a weighted average of the contribution from each
population cohort (Rκ0). Within each population, the contributing Rκ0 is the summation of the number
of secondary cases generated at each infectious stage weighted by the expected probability of entering
the infectious stage. In particular, since asymptomatic adults can have recurrent infections, they create
an infinite chain of infection with diminishing probability.

Both the basic reproduction number and the numerical simulations suggest that the HIV+ adults
with no ART are the driving force of infection for the epidemic. At the peaking time, they form 12%
of the infected population and are responsible for 74% of the infection. Thus, it would be critical
and most effective to design the intervention program that targets this particular cohort to control the
chain of the infection. On the other hand, our simulations show that largest disease burden is among
the children group in terms of the highest infection and death counts. This suggests that reducing the
susceptibility among this cohort would reduce the disease burden the most.

The sensitivity analysis identifies that the coverage of ART for the HIV-infected adults, σART , and
the malnutrition prevalence in children, σMN , are the two most important risk factors that may inform
effective disease mitigation. To control the source of the infection, it would the most impactful to
improve ART coverage among the HIV+ adults, which would reduce the asymptomatic cohort that
drives the epidemic. Children are the largest high-risk population, and it would be most productive to
reduce the overall disease burden by lowering the malnutrition prevalence in this cohort. This would
improve their immune competence and thus make them less susceptible to the pathogen. To better
inform the public health efforts, it will be useful to combine our model with a cost-benefit analysis to
optimize mitigation strategies.

This model offers important insights into iNTS dynamics and control. We recognize that our con-
clusions are based on assumptions, biases, and uncertainties in our model and parameters. Many of
these limitations are related to the choice of model parameters. For example, we have assumed that all
the parameters are constant, and there is no seasonal variation. In reality, malaria prevalence among
children is correlated with the seasonal peak of the rainy season, and the local temperature is also play-
ing a vital role in the mosquito-borne disease. Moreover, the malnutrition prevalence also increases
during the rainy season when the household food supplies decrease, and the new season’s crops are
growing.

Moreover, by having constant parameters rather than distributions, we didn’t consider the potential
super spreading events that may cause small outbreaks in a local area. We have made the assump-
tion that these events are uniformly distributed in time and the mean-field approximation can capture
their average impact over the time scales we are considering. It would be worthwhile to validate this
assumption in the future by comparing our simple model with a more complex simulation.

Our results will guide us in developing a more detailed individual agent-based model. The agent-
based model will account for each individual’s age, treatment history, family unit, and local community
spatial mixing. The sensitivity analysis has identified the importance of including comorbidities, such
as HIV infection and malnutrition, in our simulation. We will also investigate the impact of different
mitigation strategies, seasonality, and local superspreading events.

Thus, before using any model to guide policy, the model parameters need to be carefully reviewed
for the local setting. Also, the uncertainty of model predictions must be quantified with respect to the
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model assumptions. The current model is a preliminary study to investigate the iNTS epidemic, yet it
provides a robust framework that could be further extended to incorporate more practical scenarios. We
hope that models similar to the one presented here can help inform public health workers to mitigate
the disease burden.
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