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GENERATING A HIERARCHY OF REDUCED MODELS FOR A
SYSTEM OF DIFFERENTIAL EQUATIONS MODELING THE

SPREAD OF WOLBACHIA IN MOSQUITOES∗
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Abstract. We create and analyze a hierarchy of reduced order models for the spread of a
Wolbachia bacteria infection in mosquitoes. Mosquitoes that are infected with some strains of the
Wolbachia bacteria are much less effective at transmitting zoonotic diseases, including Zika, chikun-
gunya, dengue fever, and other mosquito-borne diseases. The infection will persist in a wild mosquito
population only if the fraction of infected mosquitoes exceeds a minimum threshold. Mathematical
models can be used to understand the complex maternal transmission of Wolbachia infection and to
guide efforts for keeping the infection above the threshold. This threshold can be characterized as
a backward bifurcation for a system of nine ordinary differential equations modeling the Wolbachia
infection in a heterosexual mosquito population. Although this system captures the detailed trans-
mission dynamics, they are difficult to analyze. We describe the mathematical approach used in each
model reduction to create a system of seven, four, or two ordinary differential equations that cap-
ture the important properties of the original system. We evaluate the quality of the approximation
at each step by comparing the associated important dimensionless numbers, analyzing the critical
threshold condition for each reduced model, and using phase plane analysis to demonstrate that all
the reduced models accurately reproduce the dynamics of the full system.
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modeling, sensitivity analysis
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1. Introduction. Mosquito-borne diseases are often controlled by reducing the
population size of mosquitoes by spraying insecticide, larval control, and biological
control such as the sterile insect technique. These approaches require a sustained
mitigation program to maintain effectiveness. Recently, instead of reducing the popu-
lation of wild mosquitoes, scientists have been infecting them with Wolbachia bacteria
to reduce their ability to transmit zoonotic diseases to humans. Wolbachia interferes
with the replication of arboviruses, including dengue fever [10], chikungunya [10], Zika
[3, 1], and yellow fever [15], and greatly reduces the ability of mosquitoes to spread
these infections [18].

Wolbachia is a natural parasitic microbe found in about 60% of wild insect species
[4], including mosquitoes. However, it is rarely found in the Aedes aegypti (A. ae-
gypti) that spread these arboviruses. Since Wolbachia is not naturally abundant in
the nfected with A. aegypti population, this implies that if a small number of these
mosquitoes are infected, then the infection dies out. That is, Wolbachia infection has
a basic reproductive number less than one in a population of wild mosquitoes.

Mathematical models and recent large-scale field releases of infected mosquitoes
have demonstrated that, even though a small infection will die out, if the fraction of
infected mosquitoes exceeds a threshold, then a Wolbachia epidemic can be sustained
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1676 ZHUOLIN QU AND JAMES M. HYMAN

in mosquitoes. This threshold can be understood as a backward bifurcation in the
stability analysis of the mathematical models [19, 11].

For these models to accurately capture this threshold condition, they must ac-
count for the complex maternal transmission routes throughout a mosquito’s lifecycle
as well as the impact of fitness cost induced by Wolbachia infection. In [19], a two-
sex compartmental model of six ordinary differential equations (ODEs) was proposed
to model different infection status in males, females, and aquatic-stage mosquitoes
and take into account the fitness change as well as the cytoplasmic incompatibility
between infected males and uninfected females.

In [11], this model was extended to a system of nine ODEs that includes multiple
pregnant stages of females to distinguish the unmated females from the mated ones
and treat the cytoplasmic incompatibility phenomenon explicitly as one of the three
pregnant stages in the mated females. In [7], an even larger system (13 ODEs) that
included each stage of the aquatic-stage mosquitoes (egg, larvae, pupae) was proposed,
and the fitness cost from infection was modeled as a reduced egg-laying rate for
infected females and reduced lifespans for both infected females and males.

These ODE models capture the transmission dynamics in each mosquito group,
but they all assume that the infection is spatially homogeneous (uniform) in the
mosquito populations. When infected mosquitoes are released in the wild, even though
the ratio of infected mosquitoes can exceed the threshold in the center of the release
region, it will be below the threshold at the edges of the release zone. The models
must be extended to capture this spatial heterogeneity and temporal variations to
analyze if the infected region will grow or shrink and collapse. This can be achieved
by including the diffusion and transport of mosquitoes and extending the ODE models
to a system of partial differential equations (PDEs) [20].

The difficulty of analyzing large systems of 9 or 13 PDEs have led some researchers
to propose a system of 2 ODEs for the spread of Wolbachia. The 2 ODEs are then gen-
eralized to a manageable system of 2 nonlinear partial differential diffusion equations
to account for the spatial heterogeneity. Unfortunately, the existing 2-ODE models
have been based on heuristics so that the solution behaves in a physically realistic
way, instead of being derived from the more detailed model. Also, the parameters in
the simple model are not defined in terms of the biologically relevant parameters as
used in the detailed ODE models, which makes it hard to estimate their values from
the biological lab results [15].

We will derive the reduced models through a step-by-step analysis that allows
all the parameters of the reduced models to be defined as explicit functions of the
parameters for the full model. We first define the parameters for the complex 9-ODE
model, which models the biologically relevant quantities. Next, we either identify

• variables that have the least impact on the quantities of interest or
• relationships between the variables that are constant, or slowly varying, for

the parameters and initial conditions of interest.
We use this information to reduce the number of variables and differential equations
being solved while preserving key quantities of interest for the model, such as the
important dimensionless numbers for the system of equations. We then verify that
the model reduction does not significantly alter the dynamics of the solution in the
regions of interest.

We start by recognizing that the aquatic stage plays a minor role in the maternal
transmission cycle. We eliminate the aquatic stage to create a 7-ODE model where
the parameters are functions of the 9-ODE model. The death, delay, and carrying
capacity of aquatic stages [11] are accounted for by modifying the birth rates and death
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REDUCED MODELS FOR WOLBACHIA IN MOSQUITOES 1677

rates in the 7-ODE model (subsection 3.1). Moreover, female mosquitoes quickly
become pregnant after hatching. This biologically realistic assumption allows us to
assume that the fraction of single females is relatively small and combine single and
pregnant females into a single variable and reduce the 7-ODE model to a 4-ODE
model (subsection 3.2). Finally, we identify a nonlinear proportional relationship
between the infection prevalence in male and female mosquito populations in the full
model solutions. We use this relationship to define the infected and uninfected male
mosquitoes as a function of the female mosquitoes, and we reduce the 4-ODE model
to a 2-ODE model (subsection 3.3). The resulting 2-ODE system captures the key
features of the original full system of nonlinear equations in the physically relevant
parameter space.

At each model reduction step, we define the parameters for the reduced models in
terms of the ones in the more accurate model, and we specify all the assumptions we
make throughout the approximation steps. This systematic approach allows for all
the parameters in the reduced model to be defined in terms of the epidemiologically
relevant parameters for the 9-ODE model. It also creates an explicit relationship be-
tween the model parameters and solutions and allows us to reconstruct approximated
solutions for all of the intermediate models as a function of the 2-ODE solutions.

We will evaluate the quality of the approximation by identifying the associated
important dimensionless numbers (subsection 4.1) and analyzing the critical thresh-
old condition (subsection 4.2) and phase plane dynamics (subsection 4.3). We also
compare the numerical solutions (subsection 4.4) and the sensitivity indices (subsec-
tion 4.5) between the full model and the reduced models.

The analytic and numerical comparisons show that our reduced models
• preserve the key dimensionless numbers, including the basic reproductive

number R0, the basic next generation numbers for the infected and unin-
fected populations,

• accurately capture the backward bifurcation and the critical threshold con-
dition for having a stable Wolbachia epidemic in wild mosquitoes,

• exhibit similar transient behaviors using the phase plane analysis, and
• identify the same order of relative significance for the model parameters dur-

ing the sensitivity analysis.

2. Review of the 9-ODE transmission model. The 9-ODE compartmental
ODE model (Figure 1) divides the lifecycle of a mosquito into an aquatic state (com-
bined eggs, larvae, and pupae stage), a single-adult state (for both males and females),
and three possible pregnant states for females. The infection persists because a frac-
tion, vw, of the pregnant infected females transmit the bacteria maternally through
a complex sexual cycle to their infected offspring in the aquatic state. Horizontal
(mosquito-to-mosquito) transmission is rare and ignored in the model.

When an uninfected female mosquito becomes pregnant from an uninfected male
mosquito, all of the offspring are uninfected. However, because of the cytoplasmic
incompatibility, when an uninfected female mosquito becomes pregnant from an in-
fected male mosquito, she becomes sterile and has no offspring. The nonsterile preg-
nant females (Fpu and Fpw) produce eggs at rates φu and φw, respectively, forming
the aquatic-stage population and developing into adult mosquitoes at a rate ψ. The
aquatic-stage population is regularized by a carrying capacity that accounts for the
limited environmental resources. Qu, Xue, and M. Hyman [11] provide a detailed
description of the model parameters (Table 1) and maternal transmission cycle for
A. aegypti mosquitoes infected with wMel Wolbachia.
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1678 ZHUOLIN QU AND JAMES M. HYMAN

Fig. 1. Maternal transmission of Wolbachia in the mosquito population. Uninfected females,
Fu, and Wolbachia infected females, Fw, are impregnated by either uninfected males, Mu, or infected
males, Mw, and enter the pregnant stage (with mating rate σ). Depending on the infection status of
the partners, they can be uninfected pregnant, Fpu, pregnant but sterile, Fps, or infected pregnant,
Fpw. Pregnant females produce aquatic-stage mosquitoes: uninfected pregnant females, Fpu, only
produce uninfected individuals, Au, (at rate ηu); pregnant sterile females, Fps, do not have any
offspring; and infected pregnant females, Fpw, produce a fraction of vw infected offspring, Aw, and
a fraction of vu uninfected offspring (at rate ηw). The aquatic-stage mosquitoes hatch and emerge
into adult forms (at rate ψ).

The 9-ODE model in Figure 1 is represented by the following system of ODEs:

dAu
dt

= ηuFpu + vu ηw Fpw − (µa + ψ)Au ,(2.1a)

dAw
dt

= vw ηw Fpw − (µa + ψ)Aw ,(2.1b)

dFu
dt

= bfψAu − (σ + µfu)Fu ,(2.1c)

dFw
dt

= bfψAw − (σ + µfw)Fw ,(2.1d)

dFpu
dt

= σmuFu − µfuFpu ,(2.1e)

dFps
dt

= σmwFu − µfuFps ,(2.1f)

dFpw
dt

= σFw − µfw Fpw ,(2.1g)

dMu

dt
= bmψAu − µmuMu ,(2.1h)

dMw

dt
= bmψAw − µmwMw ,(2.1i)

where the hatching rates are defined as

ηu(Au, Aw) = φu

(
1− Au +Aw

Ka

)
, ηw(Au, Aw) = φw

(
1− Au +Aw

Ka

)
,

and the fractions of uninfected and infected males are defined by

mu = Mu/(Mu +Mw) , mw = 1−mu = Mw/(Mu +Mw) .
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Table 1
All the parameters in the reduced models are defined in terms of the parameters for the full

9-ODE model. The rates have dimensions days−1.

9-ODE model parameters Baseline Reference

bf Female birth probability 0.5 [14]
bm Male birth probability 0.5 [14]
σ Per capita mating rate 1 [12]
φu Per capita egg-laying rate for Fpu 13 [5, 8, 9]
φw Per capita egg-laying rate for Fpw 11 [5, 17]
vw Maternal transmission rate 0.95 [17]
vu = 1− vw 0.05 [17]
ψ Per capita development rate 1/8.75 [5, 17]
µa Death rate for Au or Aw 0.02 [5, 9, 17]
µfu Death rate for Fu and Fpu 1/17.5 [8, 13]
µfw Death rate for Fw and Fpw 1/15.8 [17]
µmu Death rate for Mu 1/10.5 [8, 13]
µmw Death rate for Mw 1/10.5 [8, 13]
Ka Carrying capacity of aquatic stage 2× 105 Estimated
mu = Mu/(Mu +Mw) Fraction of uninfected males
ηu = φu(1− (Au +Aw)/Ka) Per capita reproduction rate for Fpu
ηw = φw(1− (Au +Aw)/Ka) Per capita reproduction rate for Fpw

7-ODE model parameters Definition

µ′fu = ψ
ψ+µfu

µfu Death rate for Fu and Fpu

µ′fw = ψ
ψ+µfw

µfw Death rate for Fw and Fpw

µ′mu = ψ
ψ+µmu

µmu Death rate for Mu

µ′mw = ψ
ψ+µmw

µmw Death rate for Mw

φ′u = ψ
ψ+µa

σ+µ′
fu

σ+µfu

µ′
fu

µfu
φu Per capita egg-laying rate for Fpu

φ′w = ψ
ψ+µa

σ+µ′
fw

σ+µfw

µ′
fw

µfw
φw Per capita egg-laying rate for Fpw

Kp = bf
ψ

σ+µ′
fu
Ka Carrying capacity for single females

η′
u = φ′u(1− (Fu + Fw)/Kp) Per capita reproduction rate for Fpu

η′
w = φ′w(1− (Fu + Fw)/Kp) Per capita reproduction rate for Fpw

4-ODE model parameters Definition

φ′′u = σ
σ+µ′

fu
φ′u Per capita egg-laying rate for Fu

φ′′w = σ
σ+µ′

fw
φ′w Per capita reproduction rate for Fw

Kf = bf
ψ
µ′
fu
Ka Carrying capacity for females

η′′
u = φ′′umu(1− (Fu + Fw)/Kf ) Per capita reproduction rate for Fu

η′′
w = φ′′w(1− (Fu + Fw)/Kf ) Per capita reproduction rate for Fw

2-ODE model parameters Definition

m′
u = Fu/(Fu +

µ′
fw

µ′
fu
Fw) Approximated fraction of uninfected males

η′′′
u = φ′′um

′
u(1− (Fu + Fw)/Kf ) Per capita reproduction rate for Fu

To simplify the notation, we do not explicitly include the variable dependence in the
bolded functions ηu(Au, Aw), ηw(Au, Aw), mu(Mu,Mw), and mw(Mu,Mw).

All of the progression rates are constant and have dimensions days−1. This implies
an exponential distribution for the time that the population takes to progress to the
next stage and that the average time spent in a stage is the inverse of this rate. For
example, the mean death rate for uninfected males is τmu = 1/µmu.
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1680 ZHUOLIN QU AND JAMES M. HYMAN

The system (2.1) is mathematically well-posed in the epidemiologically valid do-
main [11]

(2.2) D =





Au
Aw
Fu
Fw
Fpu
Fpw
Fps
Mu

Mw


∈ R9

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Au ≥ 0,
Aw ≥ 0,

0 ≤ Au +Aw ≤ Ka,
Fu ≥ 0,
Fw ≥ 0,

0 ≤ Fu + Fw ≤ bfψ 1
σ+µfu

Ka,

Fpu ≥ 0,
Fpw ≥ 0,
Fps ≥ 0,

0 ≤ Fpu + Fpw + Fps ≤ σ
σ+µfu

bfψKa

µfu
,

Mu ≥ 0,
Mw ≥ 0,

0 ≤Mu +Mw ≤ bmψKa

µmu



.

2.1. Disease-free dimensionless numbers for the 9-ODE model. When
a small Wolbachia infection is introduced into a fully susceptible population, the
transmission dynamics can be characterized by three dimensionless numbers:

• the basic next generation number for the uninfected population, G0u, is the
number of uninfected eggs produced by one uninfected egg through one life-
cycle;

• the basic next generation number for the infected population, G0w, is the
number of infected eggs produced by one infected egg through one lifecycle;
and

• the basic reproductive number, R(9)
0 = G(9)

0w/G
(9)
0u , is the average number of

secondary infections a single Wolbachia-infected mosquito will cause when
introduced into a fully susceptible population.

These quantities are derived in [11] and denoted by

(2.3) G(9)
0u = bf

ψ

µa + ψ

σ

σ + µfu

φu
µfu

, G(9)
0w = vwbf

ψ

µa + ψ

σ

σ + µfw

φw
µfw

,

and

(2.4) R(9)
0 = vw

µfuφw(σ + µfu)

µfwφu(σ + µfw)
=

G(9)
0w

G(9)
0u

.

These dimensionless numbers can be understood in terms of the products of the

physically relevant factors described in [11]. The basic reproductive number R(9)
0 can

be expressed as the ratio of growth of infected G(9)
0w to uninfected eggs G(9)

0u .

2.2. Equilibrium states of the 9-ODE model. There are three types of
equilibria in system (2.1):

• a disease-free equilibrium (DFE), EE0 = (A0
u, 0, F

0
u , 0, F

0
pu, 0,M

0
u , 0),

A0
u = Ka

(
1− 1

G(9)
0u

)
, F 0

u = bf
ψ

µfu + σ
A0
u ,

F 0
pu = bf

ψσ

(µfu + σ)µfu
A0
u, M0

u = bm
ψ

µmu
A0
u ,
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• a complete-infection equilibrium (CIE), EEc = (0, Acw, 0, F
c
w, 0, F

c
pw, 0,M

c
w) ,

Acw = Ka

(
1− 1

G(9)
0w

)
, F cw = bf

ψ

µfw + σ
Acw,

F cpw = bf
ψσ

(µfw + σ)µfw
Acw, M c

w = bm
ψ

µmw
Acw ,

• and endemic equilibrium (EE), EE∗ = (A∗u, A
∗
w, F

∗
u , F

∗
w, F

∗
pu, F

∗
pw,M

∗
u ,M

∗
w) ,

A∗u =
Ka

1 + rwu

(
1− 1

G(9)
0w

)
, A∗w = rwuA

∗
u,

F ∗u = bf
ψ

σ + µfu
A∗u, F ∗w = rwu bf

ψ

σ + µfw
A∗u,

F ∗pu =
1

1 + rwu
bf

ψσ

(σ + µfu)µfu
A∗u, F ∗pw = rwu bf

ψσ

(σ + µfw)µfw
A∗u,

M∗u = bm
ψ

µmu
A∗u, M∗w = rwu bm

ψ

µmw
A∗u ,

and

F ∗ps =
rwu

1 + rwu
bf

ψσ

(σ + µfu)µfu
A∗u .

The dimensionless ratio rwu > 0 is a root of the following quadratic equation:

(2.5)
vu
vw
r2wu +

(
vu
vw
− 1

)
rwu +

1− R(9)
0

R(9)
0

= 0.

The CIE, EEc, only exists when we have perfect maternal transmission rate (vw = 1),
and in this case, (2.5) degenerates to a linear equation and has only one root that
corresponds to one EE∗ . If the maternal transmission is imperfect (vw < 1), there
are two roots for (2.5), which result in two EEs: one high-infection EE (denoted by
EE+) and one low-infection EE (denoted by EE−).

2.3. Backward bifurcation and threshold condition. The stability analysis
of the multiple equilibria is used to characterize the backward bifurcation in Figure 2,
where the vertical axis is the fraction of infection in females. When having perfect
maternal transmission (vw = 1, left plot), there is a stable CIE, a stable DFE, and
an unstable intermediate EE∗, which serves as a threshold condition for establishing
endemic Wolbachia. Below the threshold state, the infected mosquitoes that have
been introduced to the environment are wiped out by the wild population, and the
system goes back to DFE; above the threshold state, the infection is able to gradually
invade the wild environment, and at some point, the stable CIE is achieved.

When the maternal transmission is not perfect (vw < 1, Figure 2, right plot), then
the CIE becomes a stable high-infection EE+, where both the uninfected and infected
mosquitoes co-exist in the environment, and unstable low-infection state EE− serves
as the threshold condition.

In our analysis, we consider the sterile pregnant female mosquitoes, Fps, as un-
infected mosquitoes since they do not contribute to the maternal transmission cycle.
That is, we define the fraction of “infected females” as the ratio

Ff =
Fw + Fpw

Fu + Fpu + Fps + Fw + Fpw
.
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1682 ZHUOLIN QU AND JAMES M. HYMAN

Fig. 2. For the full 9-ODE model, the threshold conditions for having a stable endemic state
are characterized by these bifurcation diagrams for perfect (left) and imperfect (right) maternal
transmission. We traced out these curves by varying the parameter φu and keeping other parameters
(except the maternal transmission rate vw) at the baseline values. The blue solid curves correspond
to the stable EE+, and the red dashed curves represent the unstable low-infection EE−, which
creates a threshold condition for establishing endemic Wolbachia. Below the threshold, the infection
can not sustain and die out; above the threshold, the infection develops and eventually achieves the
high-infection stable EE+. We note that although the state EE+ is insensitive to varying R0 as a
function of φu, it is sensitive to R0 when varied as a function of other parameters, such as vw.

Note that this key dimensionless quantity differs slightly from the analysis in [11],
where the Fps group mosquitoes were treated as infected mosquitoes. This new defi-
nition simplifies the derivation of the reduced models.

3. Model reductions. The 9-ODE model (2.1) offers important insights into
using Wolbachia as a potential mitigation strategy. However, it is difficult to analyze
a system of nine differential equations, especially when adding additional effects such
as spatial heterogeneity. This has motivated us to create a hierarchy of reduced
models based on assumptions that hold for a range of parameters and initial conditions
appropriate for real-world applications. When deriving the reduced equations, we
will strive to preserve as many key dimensionless quantities as possible and faithfully
capture the backward bifurcation and threshold conditions. Also, the reduced model
parameters and initial conditions will all be defined in terms of physically relevant
9-ODE model parameters.

The reduced models cannot capture all of the possible dynamics of the 9-ODE
model over all possible parameter ranges and initial conditions. In our analysis, we will
concentrate on preserving the key properties near the baseline values with the caveat
that the reduced model may not be valid for parameter values far from these baseline
values. The key quantities we will approximately conserve in the reduced models
include the basic next generation numbers G0u and G0w in (2.3), basic reproduction
number R0 in (2.4), and the threshold condition for establishing stable Wolbachia
epidemic, which is realized as the bifurcation diagram in Figure 2.

After describing the step-by-step reduction process, we will compare the reduced
models to the full baseline model and show that the reduced models still capture the
important properties of the original system in the next section (section 4).

3.1. The 7-ODE model: Removing the aquatic stage. The aquatic-state
populations do not directly contribute to the transmission dynamics and are a logical
place to consider when reducing the number of variables. Thus, we simplify the
9-ODE model (2.1) by first removing the aquatic stages Au and Aw. That is, we
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Fig. 3. Reduced 7-ODE model: Starting from the full baseline model in Figure 1, we remove
the aquatic stages Au and Aw and let the pregnant females reproduce offspring that directly enter
the adult stages at newly defined egg-laying rates φ′u and φ′w for the uninfected and infected group,
respectively. We also incorporate the delay in aquatic stages of the full model by adjusting the death
rates of the adult stages in the reduced model, so that we have consistent timescales of one generation
between the full model and this reduced model.

assume that the surviving eggs hatch instantaneously (with large egg development
rate ψ) and progress directly into the adult mosquitoes (see Figure 3). However, the
aquatic stage does contribute to the time duration for one generation of mosquitoes
and the number of new offspring reproduced in one generation. These are quantities
we need to preserve in our reduced models.

When removing the aquatic stages, to keep the same timescale for one generation,
we account for the significant amount of time the mosquitoes spend in the aquatic
stage by modifying the death rates for the adult mosquitoes. Since the egg hatching
rate, ψ, is constant, the distribution of time that it takes the eggs to hatch is expo-
nentially distributed. The mean time for the eggs to hatch is, therefore, τψ = 1/ψ. In
the full model, the entire lifespan of an uninfected female mosquito includes the delay
spent in the aquatic stage, τψ, and the time spent in the adult stage, τfu = 1/µfu.
Thus, for the reduced 7-ODE model, to preserve this average mosquito lifetime we
define τ ′fu = 1/µ′fu := τψ + τfu. Solving this equation for the death rate for the
modified uninfected females in the 7-ODE model, µ′fu, we have

µ′fu =
ψ

µfu + ψ
µfu .

The modified death rates for the infected females, µ′fw, uninfected males, µ′mu, and
infected males, µ′mw, are all defined by the same approach (Table 1).

The basic next generation numbers for the 7-ODE model (Figure 3) describe the
number of new uninfected and infected offspring reproduced by one uninfected and
infected female around the zero-infection steady state:

(3.1) G(7)
0u = bf

σ

σ + µ′fu

φ′u
µ′fu

and G(7)
0w = vwbf

σ

σ + µ′fw

φ′w
µ′fw

,

where φ′u and φ′w are the new egg-laying rates for the uninfected and infected pregnant
females in the 7-ODE model. The fractions σ/(σ + µ′fu) and σ/(σ + µ′fw) are the
fractions of uninfected or infected single females that successfully mate and enter
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1684 ZHUOLIN QU AND JAMES M. HYMAN

one of the pregnant stages before they die. The ratios φ′u/µ
′
fu and φ′w/µ

′
fw are the

numbers of new offspring that an uninfected or infected pregnant female can reproduce
throughout life. From there, all the offspring reproduced by the uninfected pregnant
females are uninfected, bf of which are females. For the infected population, a fraction
of vw offspring reproduced by infected pregnant females are infected through maternal
transmission, bf of which become females.

Because the basic next generation number G(7)
0u is defined around the zero-infection

state, mu = 1 and female mosquitos, Fu, can only mate with an uninfected male Mu.
These mosquitoes become uninfected pregnant females, Fpu, and not sterile pregnant
females, Fps. Therefore, the fraction mu does not show up in the fraction σ/(σ+µ′fu)

for G(7)
0u .

We require the basic next generation number of the 7-ODE (3.1) to be the same
as the 9-ODE model (2.3). This can be achieved by defining the 7-ODE egg-laying
rates as

φ′u =
ψ

ψ + µa

σ + µ′fu
σ + µfu

µ′fu
µfu

φu and φ′w =
ψ

ψ + µa

σ + µ′fw
σ + µfw

µ′fw
µfw

φw .

This definition accounts for the fraction of deaths that happen during the aquatic
stage ψ/(ψ + µa) and adjusts for the different death rates between the models using
the ratios between death rates in the full model and reduced 7-ODE model.

We move the carrying capacity from the aquatic equations to the single female
equations, so that the regularization is based on the total single female population
Fu + Fw. This can be interpreted as limiting the availability of breeding sites for the
single females. This results in the modified birth rates,

η′
u(Fu , Fw) = φ′u

(
1− Fu + Fw

Kp

)
and(3.2)

η′
w(Fu , Fw) = φ′w

(
1− Fu + Fw

Kp

)
,(3.3)

where Kp is the carrying capacity for single females,

(3.4) Kp = bf
ψ

σ + µ′fu
Ka .

The reduced 7-ODE model is

dFu
dt

= bfη
′
uFpu + vubfη

′
wFpw − (σ + µ′fu)Fu ,(3.5a)

dFw
dt

= vwbfη
′
wFpw − (σ + µ′fw)Fw ,(3.5b)

dFpu
dt

= σmuFu − µ′fuFpu ,(3.5c)

dFps
dt

= σmwFu − µ′fuFps .(3.5d)

dFpw
dt

= σFw − µ′fwFpw ,(3.5e)

dMu

dt
= bmη

′
uFpu + vubmη

′
wFpw − µ

′
muMu ,(3.5f)

dMw

dt
= vwbmη

′
wFpw − µ

′
mwMw .(3.5g)

D
ow

nl
oa

de
d 

09
/1

3/
19

 to
 1

29
.8

1.
21

7.
13

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

REDUCED MODELS FOR WOLBACHIA IN MOSQUITOES 1685

Fig. 4. Reduced 4-ODE model: From the 7-ODE model Figure 3, we reduce the scale of the
model further by combining the infection groups of uninfected and infected females and defining
uninfected females Fu = Fu + Fpu + Fps and infected females Fw = Fw + Fpw. We modify the
reproduction rates for the uninfected and infected females, φ′′u and φ′′w, respectively.

Note that all the parameters for the 7-ODE model are defined in terms of the 9-ODE
model parameters, as summarized in Table 1. The well-posed domain for the 7-ODE
model is similar to the 9-ODE model (2.2) using the 7-ODE parameters.

3.2. The 4-ODE model: Combining the infection groups. Single female
mosquitoes become pregnant soon after emerging from their aquatic stage. Also, dur-
ing this short time of being nonpregnant, they do not affect Wolbachia transmission.
Therefore, to further reduce the model, we combine the pregnant and nonpregnant
female groups and define the 4-ODE uninfected females, Fu := Fu + Fpu + Fps, and
infected females, Fw := Fw + Fpw (Figure 4).

The new egg-laying rates, φ′′u and φ′′w, for the uninfected and infected groups
are defined by matching the basic next generation numbers of the 7-ODE (3.1) and
4-ODE models,

(3.6) G(4)
0u := bf

φ′′u
µ′fu

, and G(4)
0w := vwbf

φ′′w
µ′fw

,

which gives

φ′′u =
σ

σ + µ′fu
φ′u , and φ′′w =

σ

σ + µ′fw
φ′w .

The basic next generation number, G0u, is defined at the disease-free equilibrium
(mu = 1) and is only valid when there are a few infected mosquitoes. As the Wol-
bachia epidemic progresses (mu < 1), new uninfected offspring are only born when a
single uninfected female mates with an uninfected male, which happens with probabil-
ity mu < 1. To analyze this situation after an epidemic is in progress, we generalize
the basic next generation number to estimate the number of new uninfected offspring
reproduced through one generation at any time of the epidemic, Gu. For the 7-ODE
and 4-ODE models, the next generation number is

(3.7) G(7)
u := bf

σmu

σ + µ′fu

φ′u
µ′fu

= bf
φ∗u
µ′fu

=: G(4)
u ,

and φ∗u is the adjusted birth rate for uninfected pregnant females to account for when
they could become sterile after sex with a Wolbachia infected male. In (3.7), the
fraction σmu/(σ + µ′fu) represents the probability for a single uninfected female to
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successfully mate with an uninfected male and then become an uninfected pregnant

female Fpu. At the disease-free equilibrium (mu = 1), G(7)
u |t=0 = G(7)

0u , which is the
basic next generation number defined in (3.1).

Solving (3.7) for the adjusted birth rate for the uninfected population, φ∗u, we
have

(3.8) φ∗u =
σmu

σ + µ′fu
φ′u = φ′′umu .

Next, we approximate the carrying capacity for the entire female population based
on the sum of the upper bounds of pregnant females and single females in invariant
domain (2.2). We define the carrying capacity for the female mosquitoes as

Kf = bf
ψ

µ′fu
Ka

and the resulting birth rates as
(3.9)

η′′
u(Fu, Fw) = φ′′umu

(
1− Fu + Fw

Kf

)
and η′′

w(Fu, Fw) = φ′′w

(
1− Fu + Fw

Kf

)
.

The reduced 4-ODE model is

dFu

dt
= bfη

′′
uF

u + vubfη
′′
wF

w − µ′fuFu ,(3.10a)

dFw

dt
= vwbfη

′′
wF

w − µ′fwFw ,(3.10b)

dMu

dt
= bmη

′′
uF

u + vubmη
′′
wF

w − µ′muMu ,(3.10c)

dMw

dt
= vwbmη

′′
wF

w − µ′mwMw ,(3.10d)

and the parameters are summarized in Table 1.

3.3. The 2-ODE model: Removing the males. We analyzed the solutions
of the 4-ODE model to identify combinations of the variables that are slowly varying
and could be used as a constraint to reduce the number of independent variables.
Moreover, the mosquito-borne diseases are transmitted by female mosquitoes through
blood-meal bites. This leads us to consider approximating the fraction of uninfected
males, mu, as a function of the uninfected and infected females and identify a 2-ODE
system for just the female mosquitoes. We made the simplifying realistic assump-
tions that an equal number of infected male and female mosquitoes are born, and
the ratio between the male and female infected mosquitoes only changes because of
the differences in the death rates. This biological intuition motivates the following
approximation:

(3.11) m′
u :=

Fu

Fu +
µ′
fw

µ′
fu
Fw
≈ Mu

Mu +Mw
= mu .

The ratio of female death rates µ′fw/µ
′
fu has been chosen to match the threshold con-

ditions for the 2-ODE model to the 4-ODE model (which will be verified in section 4),
and no male death rates show up due to the assumption of equal death rates for unin-
fected and infected male, µmu = µmw. Note that this approach could be modified for
situations where the birth rates for males and females are not equal and if the death
rates for uninfected and infected males were different.
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Fig. 5. Numerical simulations for the 4-ODE system with two balanced initial conditions.
The black solid curves are the fraction of uninfected males, mu, and the grey dashed curves with
asterisks are the approximated ratio, m′

u, that use the female population. For both initial conditions,
the approximation m′

u is close to mu, which justifies our assumption in (3.11).

Moreover, numerical simulations (Figure 5) show that the approximation (3.11)
is reasonably good given appropriate initial conditions: for both simulations, we have
picked the initial conditions that satisfy (3.11) exactly at t = 0, that is, (Fw/Mw)|t=0 =
µ′
fu

µ′
fw
F 0
u/M

0
u , where (F 0

u ,M
0
u) are the DFE steady states for uninfected females and

males in the 4-ODE model. (See (4.1) derived in the next section.)
We then use the approximation (3.11) to modify the birth rates η′′

u in (3.9) as

η′′′
u (Fu, Fw) = φ′′um

′
u

(
1− Fu + Fw

Kf

)
,

and the reduced 2-ODE model for Wolbachia transmission in female mosquitoes is
written as

dFu

dt
= bfη

′′′
u F

u + vubfη
′′
wF

w − µ′fuFu ,(3.12a)

dFw

dt
= vwbfη

′′
wF

w − µ′fwFw .(3.12b)

Using the definitions for the coefficients, these equations can be expressed in terms
of the original 9-ODE parameters as

dFu

dt
= cu1

Fu

Fu + cwuFw

(
1− Fu + Fw

Kf

)
Fu + cu2

(
1− Fu + Fw

Kf

)
Fw − cu3Fu ,

dFw

dt
= cw1

Fu

Fu + cwuFw

(
1− Fu + Fw

Kf

)
Fw − cw2F

w ,

where

cu1 = bf
ψ

ψ + µa

ψ

ψ + µfu

σ

σ + µfu
φu, cu2 =vubf

ψ

ψ + µa

ψ

ψ + µfw

σ

σ + µfw
φw,

cw1 = vwbf
ψ

ψ + µa

ψ

ψ + µfw

σ

σ + µfw
φw, cwu =

µfw
µfu

ψ + µfu
ψ + µfw

,

cu3 =
ψ

ψ + µfu
µfu, cw2 =

ψ

ψ + µfw
µfw, Kf =bf

(
1 +

ψ

µfu

)
Ka .
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Table 2
Dimensionless numbers G0w, G0u, and R0 are identical for all the models given the parameter

definition in Table 1.

9-ODE 7-ODE 4-ODE 2-ODE

G0w = vwbf
ψ

µa + ψ

σ

σ + µfw

φw

µfw
= vwbf

σ

σ + µ′fw

φ′w
µ′fw

= vwbf
φ′′w
µ′fw

= vwbf
φ′′w
µ′fw

G0u = bf
ψ

µa + ψ

σ

σ + µfu

φu

µfu
= bf

σ

σ + µ′fu

φ′u
µ′fu

= bf
φ′′u
µ′fu

= bf
φ′′u
µ′fu

R0 = vw
µfu φw (σ + µfu)

µfw φu (σ + µfw)
= vw

µ′fu φ
′
w (σ + µ′fu)

µ′fw φ
′
u (σ + µ′fw)

= vw
µ′fu φ

′′
w

µ′fw φ
′′
u

= vw
µ′fu φ

′′
w

µ′fw φ
′′
u

We now have a hierarchy of reduced models approximating the original 9-ODE
model at different scales. We derived the 2-ODE model for the female population with
quadratic nonlinear terms as birth rates. The parameters for the reduced models are
all defined as explicit combinations of the ones in the more accurate models (see
Table 1).

We considered reducing the model further to a single ODE by assuming that
the total population size is in equilibrium. We decided not to continue our model
reduction since this equilibrium depends on the fraction of Wolbachia infection in the
population, and the model would not be appropriate for prediction when releasing
infected mosquitoes, using insecticide to reduce the overall mosquito population, or
for a time-dependent carrying capacity.

4. Model comparisons. We will evaluate the quality of the approximation
at each step by identifying the important dimensionless numbers and analyzing the
critical threshold condition for each reduced model.

Note that in the following descriptions, for simplicity of presentation, we have
used the same notation to represent the equilibrium points across different reduced
models, and we will make it clear based on the context when referring to any of them.

4.1. Comparing dimensionless numbers. We derive the expressions of the
dimensionless numbers and steady states for each reduced model, and we summarize
the basic next generation numbers and the basic reproductive numbers for all the
models in Table 2. Using the parameter definitions in Table 1, these dimensionless
numbers all agree with the full 9-ODE model.

4.1.1. The 7-ODE model. Following the same approach as in [11], the basic
next generation numbers for the 7-ODE model are

G(7)
0u = Prob(Fu → Fpu)× (# Fu generated by Fpu)

=

(
σ

σ + µ′fu

)(
bf

φ′u
µ′fu

)
= bf

σ

σ + µ′fu

φ′u
µ′fu

,

G(7)
0w = Prob(Fw → Fpw)× (# Fw generated by Fpw)

=

(
σ

σ + µ′fw

)(
vwbf

φ′w
µ′fw

)
= vwbf

σ

σ + µ′fw

φ′w
µ′fw

.

D
ow

nl
oa

de
d 

09
/1

3/
19

 to
 1

29
.8

1.
21

7.
13

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

REDUCED MODELS FOR WOLBACHIA IN MOSQUITOES 1689

The DFE for the 7-ODE model is EE0 = (F 0
u , 0, F

0
pu, 0,M

0
u , 0), where

F 0
u = Kp

(
1− 1

G(7)
0u

)
, F 0

pu =
σ

µ′fu
F 0
u ,

M0
u =

σ + µ′fu
µ′mu

F 0
u .

The CIE for perfect maternal transmission, vw = 1, is EEc = (0, F cw, 0, F
c
pw, 0,M

c
w),

where

F cw = Kp

(
1− 1

G(7)
0w

)
, F cpw =

σ

µ′fw
F 0
w,

M c
w =

σ + µ′fw
µ′mw

F 0
w.

The EE is EE∗ = (F ∗u , F
∗
w, F

∗
pu, F

∗
pw,M

∗
u ,M

∗
w), where

F ∗u =
Kp

1 + rwu
σ+µ′

fu

σ+µ′
fw

(
1− 1

G(7)
0w

)
,

F ∗w = rwu
σ + µ′fu
σ + µ′fw

F ∗u , F ∗pu =
1

1 + rwu

σ

µ′fu
F ∗u ,

F ∗pw = rwu
σ(σ + µ′fu)

µ′fw(σ + µ′fw)
F ∗u , F ∗ps =

rwu
1 + rwu

σ

µ′fu
F ∗u ,

M∗w = rwu
σ + µ′fu
µ′mw

F ∗u , M∗u =
σ + µ′fu
µ′mu

F ∗u .

The rwu satisfies the same equation (2.5) as in the full model. Similar to the case
for the 9-ODE model, when having imperfect transmission, there are two roots for
rwu solved from the quadratic equation (2.5), which are corresponding to two EEs;
when having perfect transmission, there are one EE and one CIE instead.

Using the next generation matrix approach, we derive the basic reproductive
number for the reduced 7-ODE system (3.5)

R(7)
0 = vw

µ′fu φ
′
w (σ + µ′fu)

µ′fw φ
′
u (σ + µ′fw)

=
G(7)

0w

G(7)
0u

.

4.1.2. The 4-ODE model. The basic next generation numbers for the unin-
fected and infected population are

G(4)
0u = (# of uninfected Fu generated over the life span)× Prob(female) = bf

φ′′u
µ′fu

,

G(4)
0w = (# of infected Fw generated over the life span)× Prob(female) = vwbf

φ′′w
µ′fw

.

The DFE for the 4-ODE system is EE0 = (F 0
u , 0,M

0
u , 0), where

(4.1) F 0
u =

(
1− 1

G(4)
0u

)
Kf , M

0
u =

µ′fu
µ′mu

(
1− 1

G(4)
0u

)
Kf .
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The CIE (vw = 1) is EEc = (0, F cw, 0,M
c
w), where

F cw =

(
1− 1

G(4)
0w

)
Kf , M

c
w =

µ′fw
µ′mw

(
1− 1

G(4)
0w

)
Kf .

The EE is EE∗ = (F ∗u , F
∗
w,M

∗
u ,M

∗
w), where

F ∗u =
Kf

1 + rwu
µ′
fu

µ′
fw

(
1− 1

G(4)
0w

)
, F ∗w = rwu

µ′fu
µ′fw

F ∗u ,

M∗u =
µ′fu
µ′mu

F ∗u , M∗w = rwu
µ′fu
µ′mw

F ∗u ,

and rwu is a solution of the quadratic equation (2.5) as in the 9-ODE model.
Using the next generation matrix approach, the basic reproductive number for

the reduced system (3.10) is

R(4)
0 = vw

µ′fu φ
′′
w

µ′fw φ
′′
u

=
G(4)

0w

G(4)
0u

.

4.1.3. The 2-ODE model. The basic next generation numbers G(2)
0u and G(2)

0w

are the same for the 2-ODE and 4-ODE models. The DFE is EE0 = (F 0
u , 0) ,

F 0
u =

(
1− 1

G(2)
0u

)
Kf ,

and CIE is EEc = (0, F 0
w) ,

F 0
w =

(
1− 1

G(2)
0w

)
Kf .

The EE is EE∗ = (F ∗u , F
∗
w), where

F ∗u =
Kf

1 + rwu
µ′
fu

µ′
fw

(
1− 1

G(2)
0w

)
, F ∗w = rwu

µ′fu
µ′fw

F ∗u ,

where rwu satisfies the same equation (2.5) as in the full model.
Using the next generation matrix approach, the basic reproductive number for

the reduced system (3.12) is

R(2)
0 = vw

µ′fu φ
′′
w

µ′fw φ
′′
u

=
G(2)

0w

G(2)
0u

.

4.2. Comparing threshold conditions. The fraction of infection in females
is Ff for the 9-ODE and 7-ODE models and F ′f = Fw/(Fu+Fw) for the 4-ODE and
2-ODE models. The bifurcation diagrams for the fraction of infection in females as a
function of the basic reproductive number R0 are plotted in Figure 6 for the perfect
(top row) and imperfect (bottom row) maternal transmission cases.
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Fig. 6. Comparisons of bifurcation diagrams among the full and all the reduced models. Left
column: backward bifurcation diagrams for all models; right column: zoom in plot around the baseline
scenario. Top row: perfect maternal transmission case (we set vw = 1 and keep the rest of the
parameters at baseline values); bottom row: imperfect maternal transmission case (baseline case
using parameters in Table 1). The bifurcation curves for different models are almost overlapping
each over. From the zoom-in plot, we observe a tiny discrepancy in the unstable threshold levels
between the full model and the reduced models. At the baseline setting, the threshold percentages
to establish a stable EE infection in females are 27.35% for the full model and 28.06% for all the
reduced models.

The bifurcation curves for all the reduced models are almost indistinguishable.
The zoom-in plot in the right column shows that there is only a small discrepancy
between the full model and 7-ODE model near the baseline scenario, and all the
reduced models (7-ODE, 4-ODE, and 2-ODE systems) have the same bifurcation
curves.

The threshold ratio of infected females in the 9-ODE to sustain an epidemic,

(4.2)
Fw + Fpw

Fu + Fpu + Fps
= rwu

µfu
µfw

≈ 0.38, threshold infection ≈ 27.35% ,

is almost identical to the threshold ratio for 7-ODE, 4-ODE, and 2-ODE models,

(4.3)
Fw

Fu
= rwu

µ′fu
µ′fw

≈ 0.39, threshold infection ≈ 28.06% .

These numerical values in (4.2) and (4.3) are the evaluations at the baseline case using
values in Table 1.

4.3. Phase plane analysis. We now compare the transient behavior of the so-
lutions for the models using a phase plane analysis for the dimensionless fractions of
the population infected. The balanced initial conditions for the phase plane analy-
sis are distributed among different groups in a way that is consistent with a natural
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(a) (b) (c)

Fig. 7. Comparison of phase plane analysis between 9-ODE and 2-ODE models, given perfect
maternal transmission (vw = 1). The phase plane dynamics and solution trajectories are plotted
using dimensionless quantities: the fraction of infection and total population size with respect to
carrying capacity. The transient behaviors in the regularized groups are similar between 9-ODE
(Figure 7(b)) and 2-ODE (Figure 7(c)). For the 9-ODE model, there is a delay in the development
of infection in females when there are changes happening in the aquatic stages (Figure 7(a)).

ongoing epidemic. We approximated these conditions by rescaling the balanced rela-
tionship among the different groups at the steady-state solutions. For example, in the
9-ODE model, given Au and Aw, we derive the state variables for other compartments
as follows:

Fu = bf
ψ

µfu + σ
Au, Fw = bf

ψ

µfw + σ
Aw,

Mu = bm
ψ

µmu
Au, Mw = bm

ψ

µmw
Aw,(4.4)

Fpu = bf
ψσ

(σ + µfu)µfu

Mu

Mu +Mw
Au, Fpw = bf

ψσ

(σ + µfw)µfw
Aw,

Fps = bf
ψσ

(σ + µfu)µfu

Mw

Mu +Mw
Au.

To simplify scaling the phase-plane analysis to different populations sizes, we ana-
lyze the solution trajectories for two key dimensionless quantities: fraction of infection
in aquatic-stage mosquitoes and the total number of aquatic-stage mosquitoes relative
to the carrying capacity. We prescribe different initial conditions on the phase plane
that are above and below the carrying capacity and have various fractions of infection.
The solution trajectories converge to the carrying capacity limit and then bifurcate
and approach one of the two stable steady states: the DFE or CIE.

Figures 7(a) and 7(b) show the phase plane dynamics for the 9-ODE model under
perfect maternal transmission (vw = 1). The y-axis is the fraction of carrying capacity
for the aquatic stages. The x-axis is the fraction of females infected in Figure 7(a)
and is the fraction of aquatic populations infected in Figure 7(b). The bifurcation
point (marked using a red star) is corresponding to the unstable EE. In Figure 7(a),
the fraction of infection in the females changes little as the population approaches the
carrying capacity. The transient dynamics are more evident in the aquatic stages, as
shown in Figure 7(b). This may be due to the complicated lifecycle of mosquitoes,
which serves as buffering layers that delay the response in the adult stages when there
are changes happening in the aquatic stages.

The 2-ODE model (Figure 7(c)) phase plane (with the fraction of females in-
fected on the x-axis) is closer to Figure 7(b) because both of these plots compare the
compartments that are directly regularized by the carrying capacity constraint.
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4.4. Numerical comparisons. We compare the numerical solutions of the re-
duced models through both a top-down, where we compare an aggregated solution of
the 9-ODE model with the reduced model solutions, and bottom-up analysis, where
we use the 2-ODE model solutions to approximate the 9-ODE solutions using the
balanced relationships (4.4).

To minimize possible nonphysical initial rapid transients, we initialize the models
with a balanced initial condition, as in subsection 4.3. However, since we don’t have
the total population size available, we use an alternative approach that is described in
[6], where a very small number of infections are introduced to a system with R0 > 1
and the infection is allowed to grow to the desired initial infection level. Because
R0 < 1 in our model, any small Wolbachia infection will die out. Therefore, we
introduce a small perturbation above the unstable low-infection EE and allow this
infection to grow to the desired initial infection level.

If the simulation is for a field release of Wolbachia infected mosquitoes, where a
large number of infected mosquitoes are released, then the initial conditions are not
balanced. In this case, there will be a rapid transient process soon after the release.
These transients might not be as accurately described using the reduced models as
for the balanced initial conditions. Even so, after the initial transients, the solutions
of different models converge.

4.4.1. Top-down comparison of the 9-ODE and reduced models. In the
top-down approach, we aggregate the solutions of a 9-ODE model to compare them
with the solutions of the reduced models. We create a balanced initial condition by
perturbing the unstable low-infection EE by adding, or removing, one infected female
mosquito and run the simulation until there is at least 1% of a change in the fraction
of infection in females.

Figure 8(a) compares the solutions of the models for positive and negative per-
turbations about the EE. All the models show similar transient behavior between
the initial conditions and the same high-infection endemic state or disease-free state.
Moreover, there is some delay in the growing case for the 7-ODE model at the baseline
setting. This delay is significantly reduced when doubling the parameter egg devel-
opment rate ψ (Figure 8(b)). We further quantify this trend by evaluating the slopes
of the curves (growth and clearance rates) for the 9-ODE and 2-ODE models and the
time it takes for the infection to grow or decay (Table 3). The discrepancy is small
enough for the 2-ODE model to give qualitatively similar behavior in situations where
the dynamics are smooth.

We observed that the relative accuracy of reduced models depends on the specific
simulation. Above the threshold condition in the 30% infection case, the differences
between the reduced model and the 9-ODE model give the ranking 2-ODE>4-ODE>7-
ODE. Below the threshold condition in the 25% infection case, the order is 7-ODE>4-
ODE≈2-ODE.

4.4.2. Bottom-up comparison of the 2-ODE and 9-ODE models. In the
bottom-up approach, we use the analytic relationships that were used to define the
reduced models to boost the reduced 2-ODE solutions and reconstruct approximated
solutions for the more complex models. To reconstruct the solutions for all the com-
partments in the 9-ODE model from the reduced 2-ODE system (3.12), we use the
balanced relationship described in (4.4) to define the 9-ODE model solutions in terms
of the 2-ODE model ones. We then compare the reconstructed model with the full
9-ODE model in each group in Figure 9. The reconstructed model preserves the
steady states in fractions and presents similar transition trends. Moreover, similar to
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(a) (b)

Fig. 8. Numerical simulations using the initial infections that are above and below the unstable
EE threshold condition, respectively. The fraction of infected females (Ff or F ′f ) have the same

initial growth rate and final steady states, but slightly different transient behavior.

Table 3
The 9-ODE and 2-ODE models have similar growth or clearance rates for initial conditions

slightly above and below the threshold condition, respectively.

9-ODE 2-ODE

Growth rate at 35% (day−1) 0.081% 0.087%
Clearance rate at 25% (day−1) −0.020% −0.030%
Time from 40% to 80% infection (day) 138 118
Time from 25% to 10% infection (day) 286 242

the comparison in Figure 8, there is a delay in the 9-ODE model that could not be
captured by the reconstructed model.

4.5. Sensitivity analysis. The model parameters in Table 1 represent our best-
guess estimates for practical scenarios. However, it is difficult to obtain good estimates
of the model parameters, and often the parameters would be more accurately repre-
sented by a distribution of values than a specific scalar. We use sensitivity analysis to
quantify the relative significance of the model parameters by measuring the relative
change in the output quantities of interests (QOIs) with respect to the perturbation
on the input parameters of interests (POIs). We carry out the sensitivity analysis for
each reduced model with respect to their relevant model parameters, and we compare
how the reduced models are able to capture the relative significance in the parameters.

Following the framework in [2], we define the normalized relative sensitivity index
of a QOI, q(p), with respect to the POI, p, as

Sqp :=
p

q
× ∂q

∂p
.

The (relative) sensitivity index Sqp measures the percentage change in the QOI given
the percentage change in an input POI, that is, if parameter p changes by x%, then
quantity q changes by Sqp×x%. The sign of Sqp determines if the response is increasing
or decreasing. When evaluated at the baseline parameter values, p = p̂ and q̂ = q(p̂),
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Fig. 9. Bottom-up comparison between the solutions of the full model and the reconstructed
solution from the 2-ODE model using the balanced relationship between the groups. The reconstructed
model preserves the steady states in fractions and presents similar transition trends.

the index,

Sqp̂ := Sqp
∣∣∣
p=p̂

=
p̂

q̂
× ∂q

∂p

∣∣∣∣
p=p̂

,

is called the local (relative) sensitivity index of q at p̂.
We calculate the local sensitivity indices for the following QOIs:
1. Basic reproductive number R0; the threshold conditions to establish a stable

Wolbachia epidemic; and the endemic Wolbachia prevalence.
2. When the infection takes off, we consider the time from 40% to 80% infection

in females and the growth rate at 35% infection.
3. When the infection dies out, we consider the time from 25% to 10% infection

in females and the clearance rate at 25%.
For the QOIs in group 1, since we have explicit formulas (Table 2 for R0’s and the
unstable low-infection EEs of the models), we derive the analytic expressions for the
derivatives ∂q/∂p and sensitivity indices Sqp̂ to each relevant parameter, which are
then evaluated at the baseline values given in Table 1. For the QOIs in groups 2 and
3, since the analytic derivatives for these quantities are not available, we numerically
approximate the derivatives by using the finite difference method. (We have used
center differences with 0.1% change in p around baseline values.)

We consider POIs to be all the parameters that are associated with female mos-
quitoes: maternal transmission rate (vw), female death rates (µfu and µfw for the
9-ODE model and µ′fu and µ′fw for the 2-ODE model), egg-laying rates (φu and φw
for the 9-ODE model and φ′′u and φ′′w for the 2-ODE model), mating rate σ, hatching
rate ψ, and death rates at aquatic stages µa. We list only the results for the 9-ODE
model and the reduced 2-ODE model in Table 4. A complete comparison for all the
reduced models is presented in Appendix A. We observe that the reduced 2-ODE
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Table 4
Local relative sensitivity indices for QOIs (indicated in top labels) with respect to POIs (left

columns) for the full model for the 9- and 2-ODE models. The reduced 2-ODE model preserves the
order of significance and closely approximates the index values for all the POIs.

Relative Sensitivity Indicies

POI
QOI

Model R0
Thresh Wolb. T40–80% Growth T25–10% Clear.
cond. prev. inf. at 35% inf. at 25%

µfw 9-ODE −1.06 2.11 −0.06 1.52 −6.47 −10.87 25.65
µ′fw 2-ODE −1.00 1.93 −0.06 1.19 −6.27 −9.05 19.25

µfu 9-ODE 1.05 −2.09 0.06 −2.11 7.03 10.19 −24.87
µ′fu 2-ODE 1.00 −1.93 0.06 −2.20 7.29 8.06 −18.26

vw 9-ODE 1.00 −3.87 1.29 −7.62 15.59 16.37 −43.58
vw 2-ODE 1.00 −3.83 1.25 −8.08 17.50 13.27 −33.54

φu 9-ODE −1.00 2.67 −0.01 2.40 −9.18 −12.50 31.42
φ′′u 2-ODE −1.00 2.65 −0.01 2.54 −10.37 −10.35 24.50

φw 9-ODE 1.00 −2.67 0.01 −2.40 9.16 12.50 −31.39
φ′′w 2-ODE 1.00 −2.65 0.01 −2.54 10.38 10.35 −24.50

model preserves the order of significance and closely approximates the index values
for all the POIs: the maternal transmission rate vw has the largest impact on all the
QOIs except R0. Aside from vw, the egg-laying rates (φ∗) have the most impact on
the speed of establishment or clearance of Wolbachia epidemics (growth or clearance
rate and time to achieve endemic or decay), and female death rates have the most
impact on the final prevalence of Wolbachia infection.

5. Discussion and conclusions. We created and analyzed a hierarchy of re-
duced models to approximate a detailed system of nine ODEs that describes the spread
of Wolbachia infection in mosquitoes. Although the original large-scale 9-ODE sys-
tem captures the detailed transmission dynamics, it would be difficult to analyze the
solution if extended to a system of PDEs that includes spatial heterogeneity. We
described a procedure to reduce the 9-ODE model to the 7-ODE model by including
the impact of the aquatic stage in the adult mosquitoes. We then reduced the 7-ODE
model to a two-sex 4-ODE model by accounting for the complex sexual cytoplasmic
incompatibility for the pregnant females, without having separate categories for preg-
nant and nonpregnant females. Finally, we approximated the two-sex 4-ODE model
with a single sex 2-ODE model by identifying an approximate relationship between
the fraction of infected males and female mosquitoes.

Our step-by-step approach allows us to keep track of the transformations of the
parameters at each step of model reduction. As a result, the parameters in the
reduced 2-ODE model are defined as the explicit combinations of the ones in the full
model. This is essential when applying the model for numerical predictions and giving
guidance to the field trials. Without using this approach, it would be very difficult
to interpret the biological meanings of the coefficients of the nonlinear terms and,
therefore, to estimate their values from the experimental data. The final equations
are for the infected and uninfected female mosquito population, which is responsible
for the transmission of zoonotic diseases, such as chikungunya, dengue fever, and Zika.

We compare the reduced models to the full baseline model from both qualitative
and quantitative aspects. We validate the reduced models by comparing the key prop-

D
ow

nl
oa

de
d 

09
/1

3/
19

 to
 1

29
.8

1.
21

7.
13

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

REDUCED MODELS FOR WOLBACHIA IN MOSQUITOES 1697

erties of the models with the 9-ODE model. The reduced models could analytically
preserve the key dimensionless numbers, including the basic next generation numbers
and the basic reproductive number. They also maintain the backward bifurcations of
the dynamic system and accurately capture the threshold condition for establishing
a stable Wolbachia epidemic. The numerical simulations verified that the reduced
2-ODE model has similar transient behavior to the full 9-ODE model between the
steady states.

We used sensitivity analysis for model predictions with respect to the 9-ODE
model parameters and verify that the ranking for the relative sensitivity indices for
the reduced 2-ODE model and original 9-ODE model are the same for the basic repro-
ductive number, the threshold condition, the final prevalence of Wolbachia infection,
and the speed of growth/clearance in Wolbachia infection.

Before these models can be used to guide field studies in releasing Wolbachia in-
fected mosquitoes in the wild, we need to be fully aware of the assumptions and lim-
itations of the model. We validated the model reduction assumptions for parameters
and initial conditions in situations where the infection transmission and populations
changed slowly. In practice, a field trial that only releases a large amount of females
mosquitoes may break the balance among different compartments of mosquitoes, and
the assumption that assumes a proportional male-female ratio is violated. In such
cases, the reduced model will be only trustworthy after the initial transients settle
down.

Our reduced 2-ODE model describes the dynamics near the mosquito season when
the egg development rate and mating rate are close to the baseline values. Since the
reduced 2-ODE model is limited to predict the dynamics in female mosquitoes, it
cannot be used to model the impact of mitigation efforts, such as larvicide, on aquatic
stage. For example, seasonality such as the fluctuation in temperature and humidity
plays an important role in mosquito lifecycle. The more complex models are needed
to simulate the mosquito populations over wide variations in aquatic stages, such as
the infection surviving a long dry spell, or Wolbachia wintering over in the egg stage
[16].

Our next focus will be to simulate the dynamics of releasing infected mosquitoes
into the wild. If Wolbachia infected mosquitoes are released in a small spatial region,
then even if it is above the critical threshold in the center of the release area, as the
mosquitoes diffuse, it will be below the threshold at the edges of the region. This
means that the model must capture the spatial diffusion of the mosquitoes to analyze
if the Wolbachia infection can be sustained at the edge of the infected region. We
are extending our 2-ODE model into a 2-PDE model with spatial dynamics to better
capture the local random motion of the mosquitoes (diffusion) and advection (wind).

Appendix A. Sensitiviy analysis for reduced models. The appendix
extends the sensitivity analysis in subsection 4.5 to compare the relative sensitivity
indices for all the reduced models in Table 5. The reduced models preserve the order of
significance and closely approximate the index values for all the POIs. The maternal
transmission rate vw has the largest impact on all the QOIs except R0. Aside from
vw, the egg-laying rates (φ∗) have the most impact on the speed of establishment or
clearance of Wolbachia epidemics, and female death rates have the most impact on
the final prevalence of Wolbachia infection.

Acknowledgments. The content is solely the responsibility of the authors and
does not necessarily represent the official views of the National Science Foundation or
the National Institutes of Health.
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Table 5
Comparison of local relative sensitivity indices for QOIs (indicated in top row) with respect to

POIs (columns) for the full 9-ODE model and reduced models. The reduced models capture the order
of significance and closely approximate the index values for all the POIs.

QOI = R0

9-ODE 7-ODE 4/2-ODE

µfw -1.06 µ′fw -1.04 µ′fw -1.00

µfu 1.05 µ′fu 1.04 µ′fu 1.00

vw 1.00 vw 1.00 vw 1.00
φu -1.00 φ′u -1.00 φ′′u -1.00
φw 1.00 φ′w 1.00 φ′′w 1.00
σ 0.01 σ 0.00 σ 0.00

QOI = threshold condition

9-ODE 7-ODE 4/2-ODE

vw -3.87 vw -3.83 vw -3.83
φu 2.67 φ′u 2.65 φ′′u 2.65
φw -2.67 φ′w -2.65 φ′′w -2.65
µfw 2.11 µ′fw 2.03 µ′fw 1.93

µfu -2.09 µ′fu -2.02 µ′fu -1.93

σ -0.01 σ -0.01 σ 0.00

QOI = Wolbachia prevalence

9-ODE 7-ODE 4/2-ODE

vw 1.29 vw 1.25 vw 1.25
µfw -0.06 µ′fw -0.06 µ′fw -0.06

µfu 0.06 µ′fu 0.06 µ′fu 0.06

φu -0.01 φ′u -0.01 φ′′u -0.01
φw 0.01 φ′w 0.01 φ′′w 0.01
σ 0.00 σ 0.00 σ 0.00

QOI = Time 40% ∼ 80% infection

9-ODE 7-ODE 4-ODE 2-ODE

vw -7.62 vw -7.85 vw -8.10 vw -8.08
φw -2.40 φ′w -2.45 φ′′w -2.50 φ′′w -2.54
φu 2.40 φ′u 2.39 φ′′u 2.45 φ′′u 2.54
µfu -2.11 µ′fu -2.33 µ′fu -1.94 µ′fu -2.20

µfw 1.52 µ′fw 1.55 µ′fw 1.25 µ′fw 1.19

ψ -0.22 ψ 0.00 ψ 0.00 ψ 0.00
µa -0.04 µa 0.00 µa 0.00 µa 0.00
σ -0.04 σ -0.00 σ 0.00 σ 0.00

QOI = Growth rate at 35% infection

9-ODE 7-ODE 4-ODE 2-ODE

vw 15.59 vw 17.29 vw 17.51 vw 17.50
φu -9.18 φ′u -10.32 φ′′w 10.34 φ′′w 10.38
φw 9.16 φ′w 10.25 φ′′u -10.29 φ′′u -10.37
µfu 7.03 µ′fu 7.83 µ′fu 7.14 µ′fu 7.29

µfw -6.47 µ′fw -7.06 µ′fw -6.49 µ′fw -6.27

ψ 0.26 σ 0.06 σ 0.00 σ 0.00
µa 0.06 ψ 0.00 ψ 0.00 ψ 0.00
σ 0.05 µa 0.00 µa 0.00 µa 0.00

QOI = Time 25% ∼ 10% infection

9-ODE 7-ODE 4-ODE 2-ODE

vw 16.37 vw 13.58 vw 13.17 vw 13.27
φw 12.50 φ′w 10.58 φ′′w 10.32 φ′′w 10.35
φu -12.50 φ′u -10.56 φ′′u -10.30 φ′′u -10.35
µfw -10.87 µ′fw -9.32 µ′fw -8.93 µ′fw -9.05

µfu 10.19 µ′fu 8.46 µ′fu 8.05 µ′fu 8.06

ψ -0.25 σ 0.00 σ 0.00 σ 0.00
σ 0.05 ψ 0.00 ψ 0.00 ψ 0.00
µa -0.04 µa 0.00 µa 0.00 µa 0.00

QOI = Clearance rate at 25% infection

9-ODE 7-ODE 4-ODE 2-ODE

vw -43.58 vw -33.65 vw -33.48 vw -33.54
φu 31.42 φ′w -24.58 φ′′w -24.52 φ′′u 24.50
φw -31.39 φ′u 24.56 φ′′u 24.50 φ′′w -24.50
µfw 25.65 µ′fw 19.92 µ′fw 19.16 µ′fw 19.25

µfu -24.87 µ′fu -19.07 µ′fu -18.30 µ′fu -18.26

ψ 0.21 σ -0.02 σ -0.00 σ -0.00
σ -0.15 ψ -0.00 ψ -0.00 ψ -0.00
µa 0.02 µa -0.00 µa -0.00 µa -0.00
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