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MODELING SPATIAL WAVES OF WOLBACHIA INVASION FOR
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Abstract. Wolbachia is a natural bacterium that can infect mosquitoes and reduce their ability
to transmit mosquito-borne diseases, such as dengue fever, Zika, and chikungunya. Field trials and
modeling studies have shown that the fraction of infection among the mosquitoes must exceed a
threshold level for the infection to persist. To capture this threshold, it is critical to consider the
spatial heterogeneity in the distributions of the infected and uninfected mosquitoes created by a
local release of the infected mosquitoes. We develop and analyze PDE models to study the invasion
dynamics of Wolbachia infection among mosquitoes in the field. Our reaction-diffusion-type models
account for the complex vertical transmission and the spatial mosquito dispersion. We characterize
the threshold for a successful invasion with a bubble-shaped distribution, called the “critical bubble.”
The critical bubble is optimal in its release size compared to other spatial profiles in a one-dimensional
landscape. The fraction of infection near the release center is higher than the threshold level for the
corresponding homogeneously mixing ODE models. We show that the proposed spatial models give
rise to the traveling waves of Wolbachia infection when above the threshold. We quantify how the
threshold condition and traveling-wave velocity depend on the diffusion coefficients and other model
parameters. Numerical studies for different scenarios are presented to inform the design of release
strategies.
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1. Introduction. Wolbachia is a rising mitigation strategy to control the spread
of mosquito-borne diseases, such as dengue fever, Zika, and chikungunya. The pri-
mary vector for transmitting these viral diseases is the Aedes aegypti mosquito, and
the Wolbachia-infected Aedes aegypti mosquitoes are less capable of spreading these
diseases [3, 5, 27]. Ongoing field trials have demonstrated a significant reduction in
dengue incidence after releasing the infected mosquitoes. In the past five years, this
approach has resulted in the near-elimination of local dengue cases in Cairns and
Townsville, Australia [20]. Recently, in Yogyakarta City, Indonesia, there was a 76%
reduction in the dengue incidence announced after Wolbachia deployment [9]. Sim-
ilar city-wide trials are being carried out in Rio de Janeiro in Brazil and Bello and
Medelĺın in Colombia.

It is challenging to sustain Wolbachia infection in wild Aedes aegypti mosquitoes.
Wolbachia infection induces a fitness cost in female mosquitoes, and the
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1904 ZHUOLIN QU, TONG WU, AND JAMES M. HYMAN

infection may also be limited by the maternal transmission efficiency. Population
cage experiments of mixing mosquitoes demonstrated that there exists a minimal in-
fection threshold to have a persisting Wolbachia infection in the mosquito population
[1].

Homogeneous mixing ODE models of different scales have been developed to
quantify the threshold conditions for Wolbachia invasion. In [11], a detailed compart-
mental model of 13 ODEs was proposed that includes the egg, larvae, and pupae stage
of the immature mosquitoes. The threshold condition is analyzed as a backward bi-
furcation with an unstable coexistence equilibrium of infected and uninfected groups.
In [19], a 9-ODE model was developed that includes combined aquatic stages, and the
threshold condition was analyzed for the perfect and imperfect maternal transmission
rate. Hughes and Britton [8] derived a host-vector-Wolbachia model to quantify the
threshold condition for different strains of Wolbachia (wAlbB, wMel, and wMelPop)
in eliminating dengue transmission. In [29], a host-vector model was developed to
compare the effectiveness of wAlbB and wMel strains of Wolbachia to control the
spread of dengue, Zika, and chikungunya viruses after it is established in the field.

Most Wolbachia models ignore the role that heterogeneous spatial distributions
of the infected mosquitoes can have in establishing a stable infection. The threshold
estimates by the ODE models are for an ideally controlled situation where infected
and uninfected mosquitoes are homogeneously mixed. Even in the absence of any en-
vironmental variation, the wind and flight pattern of the released infected mosquitoes
can cause spatial variations in the fraction of infection. When infected mosquitoes
are released in the wild, although the local infection level may exceed the threshold
near the release site, it can be below the threshold and not sustainable near the edges.
Field trials have reported the collapse of infection due to the immigration of natural
mosquitoes from nearby regions [21, 10]. Extending the ODE models to PDE models
can account for the heterogeneous spatial dynamics, which can help design the field
trials and better predict the faith of the field release due to the threshold effect.

Due to the difficulty of analyzing complex high-dimensional PDEs, most previous
spatial models were derived based on heuristics and strong assumptions to produce
physically realistic solutions. In [2], a reaction-diffusion type spatial model was pro-
posed that considers Wolbachia-induced cytoplasmic incompatibility (CI) and fitness
cost. They used a cubic approximation for the vertical transmission of Wolbachia
and observed traveling wave solutions in this simple heuristic model. The idea of
a threshold introduction size for wave initiation was illustrated and derived for the
approximated equation. In [14], a two-equation spatial model was proposed for an
alternative biological control, sterile insect technique, where sterilized insects are re-
leased to create an extinction wave. A one-equation model was analyzed for its trav-
eling wave solution, assuming that the sterile population is maintained at a constant
density in space.

Qu and Hyman [18] derived a hierarchy of reduced systems of 7, 4, and 2 ODEs
from a more detailed 9-ODE model [19] with different resolutions. The reduced mod-
els captured the biologically relevant effects, such as the basic reproductive number,
bifurcation dynamics, and threshold condition for the more complex model. By start-
ing with a detailed model where all of the parameters have biological relevance, the
parameters in the reduced models can be expressed in terms of these original mean-
ingful parameters. This paper extends these results by deriving and analyzing a PDE
model for Wolbachia invasion with spatial dynamics based on the reduced 2-ODE
model.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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MODELING SPATIAL WAVES OF WOLBACHIA INVASION 1905

As a preliminary investigation, we consider the undirectional mosquitoes disper-
sion only through the diffusion approximation [25]. The resulting reaction-diffusion
spatial model accounts for the complex vertical transmission dynamic inherited from
the 2-ODE model (reaction term) and horizontal spatial diffusion. We will identify
the threshold conditions for a successful Wolbachia invasion given a local release of
infected mosquitoes in this 2-PDE model. Specifically, we define the threshold as a
natural balanced state between the local reproduction growth (reaction) and mosquito
dispersion (diffusion), referred to as the “critical bubble.” When the fraction of the
infected mosquitoes is above the threshold condition, the spatial model can create a
traveling wave of Wolbachia infection that invades the zero-infection region with a
constant velocity.

After briefly reviewing the 2-ODE model based on (section 2.1), we propose the
extended 2-PDE model (section 2.2), which can account for spatial heterogeneities in
the mosquito populations. We derive an approximate 1-PDE scalar equation (section
3) that maintains the bistable behavior in the 2-PDE model. This scalar equation is
much easier to analyze than the 2-PDE model and provides insight into understanding
the dynamics of the 2-PDE system. We compare the threshold conditions (section 4)
and the traveling wave solution (section 5) for both spatial systems. We then consider
the practical aspects of how the 2-PDE model could be used to inform the design of
the field release strategies (sections 4.3 and 5.3), as well as the sensitivity analysis on
the model parameters (section 6).

2. Wolbachia transmission models. We base our spatial models on a 2-ODE
model that is derived from a detailed 9-ODE model [18], which characterizes the
wMel strain of Wolbachia infection among the Aedes aegypti mosquitoes. The complex
nonlinear growth terms 2-ODE model retains the Wolbachia maternal transmission
dynamics of the original 9-ODE model. The 2-PDE model extends these dynamics to
include one-dimensional diffusion of the mosquitoes. This simple extension generates
nontrivial wave invasion dynamics and significantly complicates the derivation and
understanding of the threshold conditions for establishing a sustainable Wolbachia
infection.

2.1. Review of 2-ODE model. We start with a 2-ODE model [18] for Wol-
bachia-free female mosquitoes Fu(t) and Wolbachia-infected female mosquitoes Fw(t),

dFu

dt
= bfφ

′′
u

Fu

Fu +
µ′
fw

µ′
fu
Fw

(
1− Fu + Fw

Kf

)
Fu

+ vubfφ
′′
w

(
1− Fu + Fw

Kf

)
Fw − µ′fuFu,

dFw

dt
= vwbfφ

′′
w

(
1− Fu + Fw

Kf

)
Fw − µ′fwFw.

(2.1)

The parameters are defined in terms of the biologically relevant parameters from the
original 9-ODE model (see Table 2.1). We have retained the notation from the original
paper for readers’ convenience.

The 2-ODE model (2.1) describes the complex maternal transmission of Wol-
bachia infection, depending on the infection status of both the male and female mos-
quitoes [28]: Wolbachia-infected females Fw produce offspring at rate φ′′w, and a
fraction vw of these offspring are infected, regardless of the infection status of males.
About bf ≈ 1/2 of the offspring then develop into the next generation of infected
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1906 ZHUOLIN QU, TONG WU, AND JAMES M. HYMAN

Table 2.1
Model parameters and their baseline values. All the parameters in the 2-ODE model are defined

in terms of the biologically relevant parameters from the original 9-ODE model [18]. All the rates
have dimension day−1.

Biological relevant parameters (9-ODE) Baseline References

bf Female birth probability 0.5 [26]
vw Maternal transmission rate 0.95 [28]

vu = 1 − vw 0.05 [28]

σ Per capita mating rate 1 [22]
φu Per capita egg-laying rate for Fpu 13 [7, 16, 17]

φw Per capita egg-laying rate for Fpw 11 [7, 28]

ψ Per capita development rate 1/8.75 [7, 28]
µa Death rate for Au or Aw 0.02 [7, 17, 28]

µfu Death rate for Fu and Fpu 1/17.5 [16, 24]

µfw Death rate for Fw and Fpw 1/15.8 [28]
Ka Carrying capacity of aquatic stage 2 × 105 Assumed

Reduced parameters (2-ODE) Baseline Definition [18]

φ′′u Per capita reproduction rate for Fu 7.0 ψ
ψ+µa

ψ
ψ+µfu

σ
σ+µfu

φu

φ′′w Per capita reproduction rate for Fw 5.7 vw
ψ

ψ+µa

ψ
ψ+µfw

σ
σ+µfw

φw

µ′fu Death rate for Fu 1/26.25 ψ
ψ+µfu

µfu

µ′fw Death rate for Fw 1/24.55 ψ
ψ+µfw

µfw

Kf Carrying capacity for females 3 × 105 bf (1 + ψ
µfu

)Ka

D1 Diffusion coefficient for Fu (m2/day) 1.25 × 104 [23, 25]

D2 Diffusion coefficient for Fw (m2/day) 1.25 × 104 [23, 25]

females. This process corresponds to the first nonlinear birth term in the Fw equa-
tion. During the maternal transmission, leakage (imperfect vertical transmission) can
happen, with probability vu = 1− vw. The leakage results in infected females laying
viable uninfected eggs (the second nonlinear birth term in the Fu equation).

The uninfected female mosquitoes (Fu) who mate with the uninfected males
only produce uninfected offspring. Assuming homogeneous mixing among the male
mosquitoes, this happens with probability mu = fraction of uninfected males, which is

approximated by Fu/(Fu +
µ′
fw

µ′
fu
Fw) [18]. The fraction µ′fw/µ

′
fu compensates for the

shorter lifespan of Fw due to the fitness cost, µ′fw > µ′fu. When uninfected females
mate with infected males (with probability 1−mu), we assume no viable offspring will
be reproduced due to the strong CI caused by the wMel Wolbachia infection [28, 13].
All the birth terms are regularized by the carrying capacity, Kf . Wolbachia infection
may also impose a fitness cost on the female life traits, such as shorter lifespan (or a
larger death rate, µ′fw > µ′fu) and reduced reproduction rate (φ′′w < φ′′u) [16, 28]. We
refer interested readers to [15] and the references therein for more details on Wolbachia
infection in mosquitoes.

The 2-ODE model preserves the key biological quantities related to Wolbachia in-
vasion dynamics, such as the basic reproductive number and threshold condition for a
sustained Wolbachia infection. Qu and Hyman [18] provided a detailed description of
the reduction process and the comparison among reduced models, and we summarize
the key findings here. The basic reproductive number for the 2-ODE model is given
by R0 = vw(µ′fuφ

′′
w)/(µ′fwφ

′′
u), and near the baseline scenario (Table 2.1), we have

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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MODELING SPATIAL WAVES OF WOLBACHIA INVASION 1907

complete 
infection

disease-free

unstable
endemic

Fig. 2.1. Bifurcation plot for the 2-ODE model given a perfect maternal transmission. The
unstable steady state E2 corresponds to the threshold condition for a successful Wolbachia invasion
into a homogeneously mixing mosquito population. At the baseline (Table 2.1 except vw = 1), the
basic reproductive number R0 = 0.76 < 1, and threshold infection level = 22.84%.

R0 < 1. This indicates that the fitness cost and maternal transmission leakage
(vw < 1) put the infected population at a reproductive disadvantage compared to
the uninfected cohort, and hence a small Wolbachia infection might be eliminated.

However, the system presents a backward bifurcation which identifies a critical
threshold condition for invasion. As shown in Figure 2.1 for the perfect maternal
transmission case, the system has a stable Wolbachia-free equilibrium, E0, a stable
Wolbachia-endemic equilibrium, E1, and an unstable subthreshold endemic equilib-
rium, E2, where uninfected and infected mosquitoes coexist. When the fraction of
infection is above this subthreshold level, the infection takes off and approaches the
endemic state E1; when below this level, the system approaches E0 and infection dies
out. This indicates that the fitness disadvantage from the Wolbachia infection can
be compensated for by the Wolbachia-induced CI mechanism: since some of the off-
spring reproduced by the uninfected females will be nonviable when impregnated by
an infected male, there is a chance for the infected population to invade and replace
the uninfected population if the initial infection rate is sufficiently high.

Moreover, it may be impossible for the infected mosquitoes to invade if the fitness
disadvantage is too substantial (small vw and R0 values). As shown in [18, Fig. 6],
when having imperfect maternal transmission vw = 0.95 and R0 < 4vw(1 − vw) ≈
0.19, the subthreshold does not exist, and the disease-free equilibrium has global
stability.

For the spatial model, we first present the simplest case with perfect maternal
transmission rate, vw = 1. This is also a desired property for field release, where
strains (such as wMel) with less fit-cost and high maternal transmission rate can
better facilitate the process [28]. We then discuss the imperfect maternal transmission
case [28] in section 6.1, and the main conclusions are summarized in Appendix C.

2.2. The 2-PDE model. Aedes aegypti mosquitoes, especially the adult fe-
males, make local flights in search of food or places for oviposition. This random
and unidirectional movement could be approximated by a diffusion process [25]. We
extend the 2-ODE model (2.1) to a 2-PDE spatial model, and we define the diffu-
sion coefficients D1 and D2 for the uninfected and infected mosquitoes, respectively,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1908 ZHUOLIN QU, TONG WU, AND JAMES M. HYMAN

which measure the mean squared displacement of the mosquito flights per day. The
extended spatial model, under the perfect maternal transmission, is

∂Fu

∂t
= bfφ

′′
u

Fu

Fu +
µ′
fw

µ′
fu
Fw

(
1− Fu + Fw

Kf

)
Fu − µ′fuFu +∇ · (D1∇Fu),

∂Fw

∂t
= bfφ

′′
w

(
1− Fu + Fw

Kf

)
Fw − µ′fwFw +∇ · (D2∇Fw),

(2.2)

where Fu(x, t) and Fw(x, t) are population sizes for the uninfected and infected female
mosquitoes. The diffusion coefficients D1(x) and D2(x) can be location-dependent to
reflect the spatial heterogeneity in the environment. We focus on the simplest case
where these coefficients are constants. We start by nondimensionalizing the system
(2.2) and introduce the new coefficients and state variables,

u =
Fu

Kf
, v =

Fw

Kf
, t∗ = t bfφ

′′
u, x∗ = x

(
bfφ
′′
u

D1

)1/2

,

a =
φ′′w
φ′′u

< 1, b =
µ′fu
bfφ′′u

< 1, d =
µ′fw
µ′fu

> 1, D =
D2

D1
.

(2.3)

Dropping the asterisks for notational simplicity, we rewrite (2.2) as

ut =
u

u+ d v
(1− u− v)u− b u+ uxx,

vt = a(1− u− v)v − b d v +Dvxx,
(2.4)

subject to initial condition u(x, 0) = Φu(x), v(x, 0) = Φv(x). As derived in the ODE
case [18] (see also Figure 2.1), there are three spatially homogeneous steady states:

E0 = (u0, 0) = (1− b, 0), E1 = (0, v1) =

(
0, 1− b d

a

)
, E2 = (u2, v2),

where u2 = a d
a d+d−a (1− b d

a ), and v2 = d−a
a d+d−a (1− b d

a ).

2.3. Two-stage invasion dynamics for spatial models. We focus on iden-
tifying a threshold condition for the Wolbachia-infected mosquitoes to invade a local
region. When the fraction of infection is above this threshold, the invasion is sus-
tained, and the infection wave propagates across the field. We consider biologically
relevant releases covering a bounded region with a compact support.

When Wolbachia-infected mosquitoes are introduced to an empty field, where no
mosquitoes are present (u = 0), the system (2.4) reduces to

vt = a(1− v)v − bd v +Dvxx = a

(
1− b d

a
− v
)
v +Dvxx.

This PDE is equivalent to the well-known Fisher’s equation. The roots of the qua-
dratic birth term give two spatially uniform steady states of the equation: extinc-
tion of mosquitoes and maximum sustainable mosquitoes. Kolmogorov, Petrovsky,
and Piskunov [12] showed that given a compact initial condition, the invasion wave
happens, and the solution of Fisher’s equation converges to a traveling wave solution,
sweeping across the domain with a fixed wave speed and joining the two steady states.

When the infected mosquitoes are released into a field of Wolbachia-free mosqui-
toes, the invasion dynamics depend on the competition between the two mosquito

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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MODELING SPATIAL WAVES OF WOLBACHIA INVASION 1909

Fig. 2.2. The threshold condition for Wolbachia invasion depends on the spatial dynamics.
Left: Invasion happens, and the initial infection step height is slightly above the ODE threshold level
(E2 at the baseline setting, around 22.84% in Figure 2.1). The invasion process takes two stages:
wave initiation and propagation. Right: For a much higher initial infection with a narrower step
width, the infection collapses. Note: Left and right plots share the same legend.

cohorts. Typically, given a compact initial condition, a successful invasion happens
in two stages (Figure 2.2, left): the wave initiation and wave propagation.

When the Wolbachia-infected mosquitoes are first released (Figure 2.2, left, 0 <
t < 1000), the released infected mosquitoes compete with the native uninfected mos-
quitoes near the release center. If the initial condition is above certain threshold, then
the infection wave gradually grows until it reaches the stable high-infection steady
states, E1. It is critical to quantify this threshold condition to inform the design of
the field trials.

Threshold conditions estimated have been established for the ODE models under
the idealized setting where the infected and uninfected mosquitoes are homogeneously
mixed. However, in the practical field releases, there is heterogeneous mixing between
the two cohorts due to the influx of the released infected population. Simple numerical
simulations, as shown in Figure 2.2, demonstrate that the threshold condition depends
on the spatial dynamics, and the threshold condition identified by the ODE models
fails to handle the practical field release scenarios. We will identify the threshold
condition with spatial heterogeneity and explore the optimal strategy to establish
such an invasion wave.

Once the infection wave has been established, it converges to a traveling wave
(Figure 2.2, left, t > 1000), which joins the stable steady states E0 and E1 and
propagates outward with speed c. We will characterize the traveling wave solution of
the proposed spatial model.

3. Small perturbation analysis near the equilibrium. The complex non-
linear birth term (a rational polynomial factor) in the 2-PDE system (2.4) makes it
challenging to analyze the threshold conditions for establishing a traveling wave. We
derive a 1-PDE approximation to the 2-PDE model that is easier to analyze and pro-
vides insight into the 2-PDE system. This reduced 1-PDE analysis equation cannot
capture the whole dynamics of the 2-PDE model. Still, the knowledge gained from
the analytical study of the simplified system accurately predicted the threshold con-
ditions for the 2-PDE system in our numerical studies. Our numerical investigation
indicates that the two systems closely resemble each other when the assumptions for
the approximation are satisfied.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1910 ZHUOLIN QU, TONG WU, AND JAMES M. HYMAN

To reduce the number of variables, we introduce p = v/(u + v), the fraction of
infection, and look for a differential equation that has the following bistable structure
on the right-hand side,

pt ∼ p(p− p2)(1− p), where p2 =
v2

u2 + v2
=

d− a
d− a+ ad

(3.1)

corresponds to the unstable steady state E2. This is a similar formulation as the cubic
approximation in [2, equation (3)]. To this end, we consider the transformation

u+ v = 1− bd

a
+ ε,

v

u+ v
= p,(3.2)

and write u = u(p, ε) and v = v(p, ε). Note that ε = 0 at the unstable steady state
E2 and the stable high-endemic steady state E1. Assuming ε is a small quantity with
little spatial variation, that is, when the total mosquitoes population, u + v, is near
its maximum sustainable size (1− bd/a), we follow the idea of asymptotic expansion
and approximate the system (2.4) in terms of ε. During a field release, although this
assumption may not be valid immediately after releasing the infected mosquitoes, the
population is limited by the carrying capacity, and the solution quickly approaches
the nearby attracting steady-state solution.

Expanding pt = (v/(u + v))t and replacing the time derivatives using the model
(2.4), upon the parameter transformation (3.2), we have pt = F(p, ε, pxx, εxx). We
then expand the right-hand side at ε = 0 and assume εxx ≈ 0, and the O(1) term in
the expansion gives

pt =
b(d− a+ ad)

a+ a(d− 1)p
p (p− p2)(1− p) + (D + (1−D) p) pxx,(3.3)

which has a density-dependent diffusion coefficient. The first rational polynomial
remains positive around the baseline, and it is an extra factor, compared to the cubic
formulation (3.1).

When the diffusion ratio D = D2/D1 = 1, that is, the same diffusion coefficient
for the infected and uninfected females, the equation is reduced to

pt =
b(d− a+ ad)

a+ a(d− 1)p
p (p− p2)(1− p) + pxx.(3.4)

4. Threshold condition for Wolbachia invasion.The threshold condition
determines when introducing Wolbachia-infected mosquitoes will create a sustained
infection in the field.

According to the classical results in Fife [6], our spatial models are the “saddle-
saddle”-type systems, where the two stable steady states, E0 and E1, are both saddle
points in a four-dimensional phase space (see section 5). For a wide range of initial
data Φ(x), if the initial conditions satisfy

lim sup
x→−∞

Φ(x) > α, lim inf
x→∞

Φ(x) < α, α : intermediate unstable equilibrium,(4.1)

then the solution uniformly converges to a stable traveling wave [6, Theorem 4.16
and Corollary 4.18]. That is, the ODE threshold E2 is also a PDE threshold when
it is extended to the spatially homogeneous setting. However, condition (4.1) is not
practical for instructing the field releases, as it requires a positive infection present on
an infinite domain (as x→ −∞). A reasonable threshold condition for a field release
of infected mosquitoes requires that they be released over a local (compact) region.
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MODELING SPATIAL WAVES OF WOLBACHIA INVASION 1911

Critical 
bubble

PDE threshold 
infect. level

Fig. 4.1. Evolution of different initial infection distributions, identified at the corresponding
threshold levels, to the same magenta balanced bubble-shaped profile. The final curve, called the
“critical bubble,” is the threshold for the PDE model, and the peak is denoted as the PDE threshold
level.

4.1. Balanced profiles and critical bubble. For different spatial profiles of
release, such as step, triangle, or ellipse (see Figure 4.1), we can identify the corre-
sponding threshold condition, parameterized by its infection level at the peak. After
a short transition period, the threshold profiles evolve to the same bubble-shaped
profile. This unique shape balances the competition of the forces between the growth
of infection from reproduction (reaction term) and the spread of the infection from
the mosquito diffusion. Rather than attempting to quantify the threshold conditions
for an arbitrarily shaped distribution of initially infected mosquitoes, we focus on
quantifying the threshold for this balanced bubble-shaped profile.

We denote the balanced profile at its threshold height (peak at the release center)
as the PDE threshold infection level (Figure 4.1, left), and we call the corresponding
distribution curve a critical bubble, following the notion in Barton and Turelli [2].
This critical bubble curve is a nontrivial unstable equilibrium.

By symmetry, in the rest of the paper, we consider only the half-infinite domain
(the positive x-axis), and we impose a symmetric boundary condition at x = 0, which
corresponds to the release center.

4.2. Determining the threshold conditions. We first analyze the threshold
condition for the 1-PDE analysis equation (3.3). We then numerically study the
threshold condition for the 2-PDE model and compare the results.

4.2.1. Analytical study of the 1-PDE threshold.
For D = 1. The critical bubble, p(x), is the nontrivial steady state of the bound-

ary value problem (BVP) (3.4),

p′′ + h(p) = 0,(4.2)

with the boundary conditions

p′(0) = p′(∞) = 0.(4.3)

The primes denote the derivative with respect to the x, and the nonlinear function
h(p) is defined as

h(p) =
b(d− a+ ad)

a+ a(d− 1)p
p (p− p2)(1− p).(4.4)

We multiply both sides of (4.2) by p′(x) and integrate on the x-domain [x0,∞],∫ ∞
x0

p′(x)p′′(x)dx+

∫ ∞
x0

p′(x)h(p)dx = 0.
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1912 ZHUOLIN QU, TONG WU, AND JAMES M. HYMAN

Denote p(x0) = p0, and the last equation can be simplified as

1

2
(p′(x))

2
∣∣∣∞
x0

+

∫ 0

p0

h(p)dp = 0,

which can be rewritten as

p′(x0) = −
(
−2

∫ p0

0

h(p)dp

)1/2

(4.5)

using the boundary condition (4.3). Note that p(x) is a decreasing function in x.
We set the release center of critical bubble at x = 0, and p′(0) = 0. The peak of

the critical bubble is the threshold infection level, p∗ = p(0). Setting the right-hand
side of (4.5) to be zero, p∗ is the root for the nonlinear equation

H(p) =

∫ p

0

h(y)dy

= − b

6a(d− 1)4

(
(d− 1)p

(
2(d− 1)2p2(a(d− 1) + d)

− 3(d− 1)p
(
a(d− 1)2 + (2d− 1)d

)
+ 6d3

)
− 6d3 log((d− 1)p+ 1)

)
= 0.

(4.6)

To derive the shape of the critical bubble, we start from (4.5) and search for the
nontrivial solution for the initial value problem

p′(x) = − (−2H(p))
1/2

, p(0) = p∗,(4.7)

where H(p) is given in (4.6).
For D 6= 1. The analysis above could be extended for the case when D 6= 1, that

is, we want to find a nontrivial steady state for (3.3),

(D + (1−D)p)p′′ + h(p) = 0,

with the same boundary condition (4.3), and h(p) is defined as in (4.4). After nor-
malizing the leading coefficient, we have

p′′ + hD(p) = 0, hD(p) = h(p)/(D + (1−D)p),

and the rest of the analysis is identical to the D = 1 case except substituting h(p)
with hD(p). The threshold value, p∗D, is the root for the nonlinear equation

HD(p) =

∫ p

0

hD(y)dy

=

(
(d− 1)

(
(1−D)p(1− dD)

(
a(d− 1)2(2− (1−D)p) + d(d(−D(2− p)− p+ 4)

+(1−D)p− 2)
)

+ 2(d− 1)2D(d− a(1− dD)) log (1 + (1/D − 1)p)
)

−2d3(1−D)3 log((d− 1)p+ 1)

)
b

2a(d− 1)3(1−D)3(1− dD)
= 0.

(4.8)

The critical bubble satisfies the initial value problem

p′(x) = −
(
− 2HD(p)

)1/2
, p(0) = p∗D.(4.9)
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MODELING SPATIAL WAVES OF WOLBACHIA INVASION 1913

The analytical solution for the root of the nonlinear equations (4.6) and (4.8) and the
initial value problems (4.7) and (4.9) are not available, but they can be numerically
solved using simple numerical methods. Figure 4.3 in section 4.2.3 shows the critical
bubbles for a range of D values.

4.2.2. Numerical study of the 2-PDE threshold. To capture the critical
bubble for the 2-PDE model (2.4), we simulate a continuous point-release strategy,
which generates the balanced bubble-shaped profile as discussed in section 4.1. We
then iterate on different infection levels at the release center, the height of the bubble,
to find its threshold level. The three steps of this iteration algorithm are as follows.

Step 1: Point-release of infected mosquitoes to establish balanced front.
We construct the balanced profile by simulating a point-release process. At time t = 0,
we release infected mosquito at a point (x = 0) to the disease-free steady state

v(x, 0) =

{
ṽ, x = 0,

0, x ∈ (0, L],
u(x, 0) = u0, x ∈ [0, L].(4.10)

This gives an infection level of p̃ = ṽ/(u0 + ṽ) at the release center, and it’s referred to
as the target infection level. At x = 0, we impose the symmetric boundary conditions
for u and v, and at x = L, we allow free boundary conditions with zero-order extrap-
olations. The computational domain [0, L] is defined to be sufficiently large such that
it allows a natural decay of infection to zero near the right boundary.

When t > 0, we maintain the target infection level p̃ at the release center by
continuously releasing infected mosquitoes there as needed. That is, we impose the
boundary corrections on v,

v(0, t) =
p̃

1− p̃
u(0, t), v(L, t) = 0, t > 0.(4.11)

Figure 4.2 shows the infection curves of the initial BVP (2.4), (4.10), and (4.11) in
time, where a balanced profile is established (at time T1) as it reaches a balanced
state between the local growth and spatial diffusion.

Step 2: Stop releasing. After the balanced profile is established, we stop the
point-release process by removing the boundary correction (4.11). We then continue
evolving the system with the symmetric boundary conditions on the variables and
check the wave front at time T2 > T1. If the infection collapses, p(0, T2) < p̃, then
it indicates that the target infection level is below the threshold condition (p̃ < p∗,

Fig. 4.2. Illustration of algorithm for identifying 2-PDE threshold. Left: A balanced profile
is formulated through a point-release process, where infected mosquitoes are introduced as needed
to maintain the target infection level p̃ at the release center x = 0. Middle and right: Infection
collapses or grows when p̃ is below or above the threshold p∗ once the release is stopped (dashed
curves).
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1914 ZHUOLIN QU, TONG WU, AND JAMES M. HYMAN

Fig. 4.3. Left: Comparison of the estimates for threshold infection levels using the 1-PDE
and 2-PDE models. Right: Comparison of the critical bubble shapes using the two models. Overall,
the 1-PDE is a good approximation of the 2-PDE model for the threshold conditions.

Figure 4.2, middle); if the infection grows, p(0, T2) > p̃, then it’s above the threshold
level (p̃ > p∗, Figure 4.2, right).

Step 3: Iterate on the target infection level p̃. We vary the target infection
level p̃ and repeat the first two steps until we converge to the threshold level p∗,
where the wave front could maintain its shape after terminating the release. We use
a root-finding algorithm, described in Appendix A, to identify this threshold value.

4.2.3. Comparison of the threshold conditions. We compare results of the
threshold analysis for the 1-PDE analysis equation (described in section 4.2.1) and
the 2-PDE model (described in section 4.2.2).

Threshold infection level. We vary the diffusion ratio D and note that the thresh-
old levels for the 1-PDE are slightly larger than the ones for the 2-PDE case (Fig-
ure 4.3, left): at the baseline (D = 1), the PDE threshold estimates are

p∗1-PDE ≈ 0.35741, p∗2-PDE ≈ 0.34680, p∗1-PDE − p∗2-PDE ≈ 0.01.

Increasing the diffusion ratio D lowers the threshold level for establishing Wolbachia
infection. This suggests that when the infected mosquito becomes more dispersive
(D2 increases), it helps the infection spread out to the nearby region and establish
the infection wave front.

The PDE threshold levels are above the ODE threshold, determined by the un-
stable steady state E2. At the baseline values, we have

p∗ODE =
v2

u2 + v2
=

d− a
d− a+ ad

≈ 0.2284.

The ODE threshold values can significantly underestimate the infection levels needed,
which emphasizes the necessity for incorporating spatial dynamics to give a more
reliable prediction for the Wolbachia invasion in the field.

Critical bubble shape. Figure 4.3 (right) compares the 1- and 2-PDE critical bub-
bles. The small discrepancy near the release center corresponds to the difference in
the threshold infection levels (≈ 0.01, shown on the left).

As the diffusion ratio D increases, the infected mosquitoes disperse faster, causing
the critical bubble to become wider and have a fatter tail near the edge of releasing
region. This affects the optimal distance between the release locations for multiple
releasing sites and the superposition of the invasion waves happens.
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MODELING SPATIAL WAVES OF WOLBACHIA INVASION 1915

We see that the 1-PDE analysis gives a good approximation to the 2-PDE model
in terms of the threshold-related quantities. Besides, the iterative algorithm for identi-
fying the 2-PDE threshold is much more computationally expensive than the approach
taken in the 1-PDE case. Hence, the reduced 1-PDE analysis equation provides valu-
able insights for the complex 2-PDE model.

4.3. Practical considerations for bubble and nonbubble thresholds. When
releasing infected mosquitoes in the field, practical considerations such as the total
number of mosquitoes released, duration of the release program, and different spatial
profiles may be associated with the implementation and cost of the field trials. We
present how these quantities are impacted by the diffusion ratio D during the bubble
formulation. We also compare non-bubble-shaped release profiles and observe that
the critical bubble has an optimal shape with a minimal release number.

4.3.1. Release number for critical bubble establishment. We consider the
point-release process for the critical bubble establishment (Figure 4.2), where infected
mosquitoes are released at one point to maintain the target infection level p̃ = p∗. To
calculate the total release number during the process, we estimate the (accumulative)
released number R(t),

Rt =
d

dx

(∫ ∞
0

v(x, t)dx

)
−
∫ ∞
0

a(1− u− v)v − b d v dx = −Dvx(0, t).(4.12)

The release rate is the change in the total infected population, excluding the contri-
bution from the mosquito net growth rate. Assuming vx(∞) = 0, the release rate
depends on the influx of infection from the left boundary. We solve (4.12) simultane-
ously with the 2-PDE model (2.4) as a diagnostic equation.

In Figure 4.4 (left), the initial stage of the point-release process requires a large
release to maintain the target infection level. As the critical bubble forms, the infec-
tion density at the release center becomes more stable, and fewer mosquitoes need
to be released each day. Eventually, the release curve reaches a plateau (which may
take as long as t = 106 for D = 0.5), where no more infected mosquitoes are released,
and the established critical bubble can sustain itself in time. As the diffusion ratio
D increases (or a faster dispersion of infected mosquitoes D2), fewer infected mosqui-
toes need to be released before the solution converges (middle plot), and the infection
curve converges faster to the critical bubble (right plot). This is also seen from the
release curves (left), where the curves for larger D become flat sooner.

larger D
larger D

Fig. 4.4. Left and middle: When diffusion ratio D increases, it lowers the total release number
needed to establish the critical bubble. Right: The convergence rate is slightly faster as D increases,
which suggests a quicker establishment of the critical bubble.
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1916 ZHUOLIN QU, TONG WU, AND JAMES M. HYMAN

4.3.2. Critical bubble as an optimal spatial threshold profile. The crit-
ical bubble is a balanced spatial configuration of the infection. We can also identify
the threshold conditions for unbalanced spatial profiles, such as step, triangle, or el-
lipse. However, as shown in Figure 4.1, these threshold profiles evolve to the critical
bubble in time. This leads to a natural question: Does the critical bubble represent an
optimal infection distribution to give rise to an invasion wave? To this end, we com-
pare the unbalanced threshold profiles to the critical bubble by measuring the release
numbers.

We first consider the step release profile. For a fixed width of the step, we can
find its threshold condition, which is the minimum height needed for invasion (see
Figure 4.5, top left). We then calculate the total release number needed as the area
under the threshold curve. We note that this corresponds to a different release design
from the point-release process described previously, where infected mosquitoes are
released continuously at one point to form a bubble-shaped front in time. Here, it
assumes that the infected mosquitoes are distributed in a given shape and released all
at once. Among all the thresholds curves for different step widths, the optimal step
width that has the minimal release number is around 30 (Figure 4.5, bottom right),
and all the step widths require greater release numbers than the critical bubble does.

Fig. 4.5. Comparison of threshold conditions for unbalanced profiles and critical bubble.
Top and bottom left: Threshold curves for step, triangular, elliptical releases with different widths.
Bottom right: The total release number, the area under the curve, for different threshold curves.
The critical bubble has the smallest infection area, compared to other unbalanced profiles.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/0

4/
23

 to
 6

6.
69

.7
0.

19
7 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



MODELING SPATIAL WAVES OF WOLBACHIA INVASION 1917

We then consider two other unbalanced profiles, triangles and ellipses of different
widths. Similar to the step case, there is an optimal width (around 40 and 30, respec-
tively) that gives the minimal release number. The release number curves for all the
spatial configurations are above the critical-bubble curve.

These results support the observation that the critical bubble has an optimal
spatial distribution that requires fewer infections for establishing wave invasion, com-
pared to the other simple unbalanced distributions we tried. This comes from the
advantage of being a balanced profile, where the reaction (net growth) and diffusion
(mosquito dispersion) have been balanced at each location. In contrast, for an unbal-
anced distribution, the infection curve has to go through adjustments before reaching
a balanced state due to the competing dynamics. This causes the waste of infection
due to the local carrying capacity constraint and natural morality in time.

We also note that the critical bubble may not be a practical design for the field
trials. Unlike the uniform step profile or the point release, the shape of the bubble
requires varying the release quantity as a function in space. Nevertheless, the study of
the critical bubble serves as a useful theoretical reference. As one can observe from the
comparison in Figure 4.5, those spatial configurations that give the minimal release
numbers are the ones that more closely mimic the bubble shape in its shape family.
We also caution the reader that these results are for a one-dimensional system, and
the shape of the critical bubble will be different for a two-dimensional release pattern.

5. Traveling wave propagation of Wolbachia invasion. When the released
infected mosquitoes are above the threshold, the Wolbachia infection can be sustained
and the infection wave propagates to the nearby zero-infection region in a traveling
wave form. The speed and shape of this traveling wave will be determined by the
local environment (model parameters) and are independent of the initial conditions.

5.1. Existence of traveling wave solutions. We discuss the existence of trav-
eling wave solutions for both the 1-PDE and 2-PDE models.

5.1.1. Classical results for 1-PDE analysis equation. Consider the reduced
1-PDE pt = h(p) + pxx, where h(p) is defined in (4.4). The traveling wave solution
has the form p(x, t) = P (x− ct) = P (z), and it satisfies the ODE

P ′′ + cP ′ + h(P ) = 0, lim
z→−∞

P (z) = 1, lim
z→∞

P (z) = 0,(5.1)

where we set the boundary conditions to join the two steady states P = 1 and P = 0.
We look for a right-going traveling wave (c > 0) that leads to the invasion and
expansion of Wolbachia infection.

Letting X = [P,W = P ′]>, the ODE can be rewritten as a system of first-order
ODEs

X′ =
d

dz

[
P

W

]
=

[
W

−cW − h(P )

]
, P1 = X(−∞) =

[
1

0

]
, P0 = X(∞) =

[
0

0

]
.(5.2)

The traveling wave solution that we are looking for corresponds to a trajectory in the
phase plane (P,W ) of the system (5.2), connecting the two steady states P1 and P0.
The existence of such a trajectory depends on the type of the steady states. To this
end, we linearize the system and obtain the Jacobian matrix,

Jp =

[
0 1

−h′(P ) −c

]
with eigenvalues λ± =

−c±
√
c2 − 4h′(P )

2
.
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1918 ZHUOLIN QU, TONG WU, AND JAMES M. HYMAN

Since h′(1) = −b < 0 and h′(0) = b(1− d/a) < 0 at the baseline, the two eigenvalues
are real and have opposite signs around the steady states P1 and P0, which are both
saddle points.

This saddle-saddle scenario has been discussed thoroughly for a general reaction
function h(p): assuming there is only one internal zero in (0, 1), except for transla-
tion in a coordinating system, there exists one and only one traveling wave front [6,
Theorem 4.15], and the wave front is a stable solution [6, Corollary 4.18].

5.1.2. Inference for 2-PDE model. Following a similar idea as in the 1-PDE
analysis equation, we shall see that we also have the saddle-saddle scenario. We
present the preliminary steps below and infer that the same conclusions (existence,
uniqueness, stability) hold for the 2-PDE model due to the similarity between the
two models. However, a rigorous proof for the general two-equation reaction-diffusion
system remains an open question to the authors’ knowledge.

We look for the traveling wave solution for the 2-PDE model

ut = f(u, v) + uxx, f(u, v) =
u

u+ d v
(1− u− v)u− b u,

vt = g(u, v) +Dvxx, g(u, v) = a(1− u− v)v − b d v,
(5.3)

of the form u(x, t) = U(x− ct) = U(z) and v(x, t) = V (x− ct) = V (z). Substituting
the traveling wave form into (5.3), we have that U and V need to satisfy

U ′′ + cU ′ + f(u, v) = 0, lim
z→−∞

U(z) = 0, lim
z→∞

U(z) = u0,

V ′′ + cV ′ + g(u, v) = 0, lim
z→−∞

V (z) = v1, lim
z→∞

V (z) = 0,

and we look for a right-going traveling wave (c > 0). Let X = [U,K = U ′, V,Q =
V ′]>, and the system can be rewritten as a system of first-order ODEs

X′ =
d

dz


U

K

V

Q

 =


K

−cK − f(U, V )

Q

−cQ− g(U, V )

 , E1 = X(−∞) =


0

0

v1

0

 , E0 = X(∞) =


u0

0

0

0

 .
(5.4)

The traveling wave solution corresponds to a trajectory in the phase plane,
(U,K, V,Q), of the system (5.4), connecting the two steady states from E1 to E0

(see Figure 2.2, left). In particular, we look for a physically relevant monotone solu-
tion, where X is increasing in U and decreasing in V , and the trajectory should stay
within the following domain:

0 ≤ U ≤ 1, K > 0, 0 ≤ V ≤ 1, Q < 0.

To determine the types of stability for the steady states E0 and E1, we linearize
the system around them. The linearization of system (5.4) at E0 gives the Jacobian
matrix

J0 =


0 1 0 0

−fu0 −c −fv0 0

0 0 0 1

−gu0 0 −gv0 −c

 ,
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MODELING SPATIAL WAVES OF WOLBACHIA INVASION 1919

where

fu0 = 1− b− 2u0 = −(1− b), fv0 = (d− 1)u0 − d,
gu0 = 0, gv0 = a(1− u0)− b d = (a− d) b,

and the characteristic polynomial of J0 is

x2(c+ x)2 + x(c+ x)(fu0 + gv0)− fv0 gu0 = 0.

This gives four distinct real eigenvalues:

λ
(0)
1,2 =

1

2

(
− c±

√
c2 − 4fu0

)
, fu0 < 0 (b < 1 from (2.3)),

λ
(0)
3,4 =

1

2

(
− c±

√
c2 − 4gv0

)
, gv0 < 0 (a < d from (2.3)).

Thus, we have λ
(0)
2 < 0 < λ

(0)
1 and λ

(0)
4 < 0 < λ

(0)
3 , and steady state E0 is a saddle

point on the phase plane.
Repeating the analysis at E1, we obtain the Jacobian matrix

J1 =


0 1 0 0

−fu1 −c −fv1 0

0 0 0 1

−gu1 0 −gv1 −c

 ,
where

fu1 = −b, fv1 = 0,

gu1 = −av1 = b d− a, gv1 = a− b d− 2av1 = b d− a,

and the eigenvalues of J1 are

λ
(1)
1,2 =

1

2

(
− c±

√
c2 − 4fu1

)
, fu1 = −b < 0,

λ
(1)
3,4 =

1

2

(
− c±

√
c2 − 4gv1

)
, gv1 = b d− a < 0 (from (2.3)).

Thus, we have λ
(1)
2 < 0 < λ

(1)
1 and λ

(1)
4 < 0 < λ

(1)
3 , and the steady state E1 is also a

saddle point on the phase plane.
In Figure 5.1, we sketch the phase plane trajectories and the steady states saddle

points, E0 and E1. We only consider the physically relevant trajectories within the
space 0 ≤ U ≤ 1,K > 0, 0 ≤ V ≤ 1, Q < 0. This corresponds to the first quadrant
stripe in the U -K plane and the fourth quadrant strip on the V -Q plane. Near the
steady state E0 (the blue trajectories), since U is increasing and K > 0, on the U -K
plane, the trajectory goes from left to right (in positive U -direction), while on the V -Q
plane, since V is decreasing, the trajectory near E0 goes from right to left (in negative
V -direction). Similarly, we can determine the direction of trajectories near the saddle
steady state E1 (the orange ones). By continuity arguments, or by heuristic reasoning
from the phase plane sketch of the trajectories, we claim that there is a trajectory
that connects the steady states, which corresponds to the traveling wave front.

5.2. Traveling wave speeds and shapes. We are going to analyze the trav-
eling wave profile and wave speed using the reduced 1-PDE analysis equation. We
then compare the results with the numerical solutions of the 2-PDE model.
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1920 ZHUOLIN QU, TONG WU, AND JAMES M. HYMAN

Fig. 5.1. Phase plane analysis and sketch of solution trajectories.

5.2.1. Traveling wave solution for 1-PDE analysis equation.
For D = 1. We look for the traveling wave solution p(x, t) = p(x− ct) = P (z) for

(3.4), which satisfies the ODE (5.1). Let

G(P ) =
dP

dz
= −P ′,(5.5)

where the prime denotes the derivative with respect to the x. We have picked the
coordinate direction z = −x, so that P is increasing in z and G(P ) ≥ 0. Then,
P ′′ = (−G)x = −Gx = −GPPzzx = GG′, and (5.1) can be rewritten as an equation
of variable P ,

GG′ − cG+ h(P ) = 0,(5.6)

with the boundary conditions

G(0) = G(1) = 0.(5.7)

We look for a wave speed c > 0 that is consistent with the BVP (5.6) and (5.7) using
the linear shooting method. That is, for a given value c, we convert the BVP to
an initial value problem (IVP) by using a linear approximation near P = 0, and we
identify the value c such that the solution matches the boundary condition at the
other end of the domain, G(1; c) = 0.

Suppose near P = 0, we use linear approximate G(P ) ≈ λP (λ > 0 since G(P ) ≥
0). Substituting this approximation to (5.6), we have

λ2P − cλP + h(P ) = 0,

which gives

λ± =
cP ±

√
(cP )2 − 4Ph(P )

2P
≈
c±

√
c2 − 4h′(0)

2
(for small P ).

Since h′(0) < 0 and c > 0 (right-going wave), only the positive root, λ+ > 0, is
relevant. The second approximation is made for small P near zero.

We now numerically integrate an IVP (5.6) subject to the initial condition

G(Pε) = λ+ Pε, where Pε � 1.

This gives G(1; c) for any given c, and the solution for the original BVP problem,
(5.6) and (5.7), corresponds to root of the nonlinear equation G(1; c) = 0. Once the
root is found (so as the λ), by the definition of G(P ) in (5.5), we could integrate and
obtain the traveling wave solution P (−z).
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MODELING SPATIAL WAVES OF WOLBACHIA INVASION 1921

Fig. 5.2. Left: Iteration curves (on c) from the shooting method; the final solution (which
corresponds to c ≈ 0.046) is marked in magenta, which passes (1, 0) and satisfies the BVP. Right:
The traveling wave solution identified by the final result of the shooting method.

For general D. For the general case (3.3), it’s a straightforward generalization of
the D = 1 case. Following the same idea, we have a BVP for GD(P )

(D + (1−D)P )GDG
′
D − cGD + h(P ) = 0,(5.8)

subject to boundary condition

GD(0) = GD(1) = 0.(5.9)

Considering a linear approximation at P = 0, GD(P ) ≈ λD P , and substituting it
into (5.8), we get one relevant positive coefficient (for small P )

λD ≈
c+

√
c2 − 4(D + (1−D)P )h′(0)

2(D + (1−D)P )
.

Thus, we transform the BVP, (5.8) and (5.9), into an IVP (5.8) with initial condition
GD(Pε) = λD Pε, Pε � 1, and we solve the nonlinear equation GD(1; c) = 0 using an
iterative method.

In Figure 5.2 (left), we plot the curve G(P ; c) at each iteration step when solving
the root-finding problem at D = 1. At the final iteration, the estimated wave velocity
c ≈ 0.046, or equivalently 9.63 m/day in the dimensional parameters. This gives a
curve (in magenta) that satisfies G(1; c) = 0 within the tolerance 10−6. On the right,
we show the traveling wave solutions, P (−z) = P (x), estimated by the shooting
method for a range of D values. As diffusion ratio D increases, the wave shape
becomes slightly wider and flatter, and the front propagates faster. The corresponding
estimated velocity is given in Figure 5.3 (right) (1-PDE estimate curve).

5.2.2. Comparison with traveling wave solution for 2-PDE model. We
numerically integrate the 2-PDE model for a long time to obtain a reference for the
traveling wave solution. At baseline D = 1, we compare the shape of the infection
fronts (p = v/(u+ v)) with the 1-PDE result in Figure 5.3 (left). The solutions have
been shifted in the x-coordinate to align in the center of the domain, and the error
curve is plotted on the right y-axis. The traveling wave fronts obtained from two
approaches are close, and the error ‖p1−PDE − p2−PDE‖∞ ≈ 0.016.

We numerically estimate the traveling wave velocity for the 2-PDE model by
considering c(x, t) ≈ −ut(x, t)/ux(x, t). We determine the velocity for the infection
wave front when the median of c(x, t) stabilizes in time and the wave front does not
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1922 ZHUOLIN QU, TONG WU, AND JAMES M. HYMAN

Fig. 5.3. Left: Comparison of traveling wave fronts for D = 1. The left y-axis gives the
infection level and right y-axis shows the discrepancy between two approaches. Right: Comparison
of wave velocities. The 1-PDE estimates are consistently smaller than the 2-PDE reference.

hit the computational domain. When D = 1, the velocity c ≈ 0.052 (or 10.91 m/day
in the dimensional parameters). As seen from Figure 5.3 (right), the velocity from
the 1-PDE analysis equation consistently underestimates the wave velocity for all the
D coefficients, and the relative error (c2−PDE − c1−PDE)/c2−PDE ≈ 12%.

5.3. Practical consideration for successful invasion. To establish a travel-
ing wave of Wolbachia infection, we aim for an infection level above the critical bubble
profile. The critical bubble is a threshold condition for wave initiation. However, it
may not be an ideal release design if a faster establishment of the infection wave is
desired. To inform a more practical scenario, we simulate releases of different target
infection levels (as defined in section 4.2.2) above the threshold. We search for an
optimal level to balance the release time with the release amount needed for wave
establishment. These simulations will be focused on the point-release strategy since
it is a good approximation of a local release site. The insights gained from this simple
setting may imply general principles that are applicable in other scenarios.

Minimal release time T ∗1 . We simulate the point-release scenario using a similar
process described in section 4.2.2. For each target infection level p̃ > p∗, the following
occurs: step 1, we release continuously (with boundary correction (4.11)) at the
release center for a period of time T1; step 2, we stop releasing at the center and
check if the traveling wave front could be established at time T2 > T1. We vary the
release time T1 and iterate on steps 1 and 2 to search for a minimal releasing time
required. We use a root-finding algorithm described in Appendix B to identify the
T ∗1 . The corresponding minimal release number for the point-release strategy is the
total release number during step 1, that is, R(T ∗1 ), as defined in section 4.3.1.

Figure 5.4 (left) shows that increasing the target infection level p̃ results in a
shorter minimal release time, but the reduction in time saturates and approaches a
certain level for p̃ in the high-infection region . For the total release curves (Fig-
ure 5.4, right), within the low-infection region , although a larger p̃ requires a larger
release initially at the release center, due to the benefit of the reduction in the re-
lease duration, the overall release number decreases. Meanwhile, in the high-infection
region , the release numbers bounce back. This is due to the penalty of the local
carrying capacity in the model and that many of released infected mosquitoes die
before they can diffuse into the nearby region to produce offspring. Thus, even the
release amount increases for large p̃; it no longer improves the release time. Overall, to
have a cost-effective release design, it’s better to set a target infection level p̃ ≈ 0.435
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MODELING SPATIAL WAVES OF WOLBACHIA INVASION 1923

1 2 1 2

Fig. 5.4. Minimal release time (left) and total release number (right) using a point-release
strategy. The optimal infection level to be maintained at the center is p̃ ≈ 0.435, which requires a
shorter release time and smaller release size.

(1.89×ODE threshold level), so that it reduces the establishment time to a certain
point but requires a relatively small number of infected mosquitoes.

We see a similar trend across different diffusion ratios D, and larger D favors
the establishment of the infection wave in terms of shorter minimal release time and
smaller total release number. This is consistent with what we have observed for the
establishment of the critical bubble (see section 4.3.1 and Figure 4.4).

6. Sensitivity analysis. The model parameter values in Table 2.1 represent our
baseline estimates, which inherent uncertainty from the biological measurements or
depend on the choice of Wolbachia strains, mosquito species, local weather conditions,
etc. We use sensitivity analysis to quantify the relative significance of the model
parameters of interest (POIs) toward the output quantities of interest (QOIs).

Following the framework in [4], we define the normalized sensitivity index (SI) of
a QOI, q(p), with respect to the POI, p, as

Sqp =
p

q
× ∂q

∂p

∣∣∣∣
p=p̂

,

at the baseline value p = p̂. This dimensionless number predicts the impact of percent-
age change: if the parameter p changes by x% around the baseline, then the quantity
q changes by Sqp×x%. To estimate the SI, we perturb the parameters (except D1 and
D2) by 0.1% and use second-order centered finite difference to approximate the partial
derivatives. For the diffusion coefficients D1 and D2, we have used 1% perturbation
to avoid any numerical instability, such as having a singular denominator in (4.8).

We also consider POIs that measure the fitness cost induced by the Wolbachia
infection:

• rµ := (µ−1fu − µ
−1
fw)/µ−1fu , which gives the fractional reduction in lifespan for

the infected mosquitoes, and
• rφ := (φ′′u − φ′′w)/φ′′u, which gives the fractional reduction in the reproduction

rate among the infected mosquitoes.
We present the SI results in Table 6.1 for both the original 2-PDE model and the

reduced 1-PDE analysis equation. The reduced 1-PDE analysis equation preserves
the order of significance and closely approximates the index values of the 2-PDE ones.
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1924 ZHUOLIN QU, TONG WU, AND JAMES M. HYMAN

Table 6.1
Normalized sensitivity indices for QOIs (top row) with respect to POIs (left column) for the

2-PDE model and reduced 1-PDE analysis equation.

PDE threshold Bubble area Wave speed

1-PDE 2-PDE 1-PDE 2-PDE 1-PDE 2-PDE

vw −4.54 −4.43 −3.20 −3.18 5.09 5.19
φ′′u 3.40 3.28 2.27 2.26 −2.77 −2.66

φ′′w −3.40 −3.29 −1.75 −1.75 2.27 2.16
rφ 0.79 0.76 0.40 0.40 −0.53 −0.49

µ′fu −2.62 −2.54 −1.48 −1.09 2.09 1.85

µ′fw 2.62 2.54 0.96 0.58 −1.59 −1.36

rµ 0.18 0.18 0.07 0.04 −0.11 −0.09

D1 0.03 0.04 −0.34 −0.38 −0.49 −0.50
D2 −0.03 −0.04 0.35 0.38 0.49 0.50

Kf 0 0 0 0 0 0

6.1. Impact of imperfect maternal transmission. The maternal transmis-
sion rate, vw, measures the fraction of infection among the offspring reproduced by the
infected females, and it has been a significant parameter that impacts the threshold
condition and invasion process in the spatially homogeneous setting [18, 19]. For sim-
plicity, we have based our previous discussions on the perfect maternal transmission
rate vw = 1. To study the impact of the imperfect case, when vw < 1, we derive the
corresponding threshold and traveling wave conclusions, which is a straightforward
extension of the previous analysis. The results are summarized in Appendix C.

As in the ODE setting, the maternal transmission rate, vw, is still the most
sensitive parameter across all the QOIs for the spatial models. The magnitude of the
SI for the PDE threshold is comparable to the ODE setting (−4.36 in [19, Table 6.1]).

6.2. Sensitivity analysis on other model parameters. From Table 6.1, the
magnitudes of the SIs for the reproduction rates (φ′′∗) is greater than the ones for the
death rates (µ′∗). This suggests that the reproduction of offspring is more important
than the lifespan of the mosquitoes when it comes to the invasion process, including
determining the threshold infection level needed at the release center and predicting
the propagation speed for the infection wave.

This trend could be better observed by considering the relative impact of reducing
the reproduction and lifespan due to the Wolbachia infection. From the SI table, we
have SI∗rφ/SI

∗
rµ > 4 for all the QOIs. This indicates that the impact of reducing

the reproduction rate, as measured by the magnitudes of the SI, is more than 4×
greater than the reduction in lifespan. Specifically, for every 1% of reduction in
the reproduction rate, it would raise the threshold by 0.76%, while for lifespan, the
increase is 0.18%. Similarly, a 1% reduction in reproduction rate will slow the invasion
front by 0.49%, while a 1% decrease in lifespan will slow the front by 0.09%. We could
see a similar comparison in the ODE setting [19, Table 6.1], but the difference is much
smaller (less than 2×). These simulations illustrate the importance of reproduction
rates in the invasion process.

The sensitivity analysis results also suggest that a smaller diffusion coefficient,
or the decrease in the flying activities, among the infected mosquitoes may increase
the invasion threshold and make it harder to spread out the infection. However, the
relative impact is less significant than the other parameters discussed before.
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MODELING SPATIAL WAVES OF WOLBACHIA INVASION 1925

Lastly, all the QOIs are not sensitive to changes in carrying capacity, Kf . This
is because the invasion dynamics are only determined by the competition between
the infected and uninfected mosquitoes. Our model formulation has assumed that
the two types of mosquitoes are equally impacted by the Kf , and thus changing Kf

won’t affect the infection density.

7. Discussions and conclusions. We created and analyzed spatial models for
Wolbachia invasion dynamic in the field. The 2-PDE model is based on previous ODE
models, where there exists a critical threshold infection level for the infected mosqui-
toes to persist in the population. We derived the spatial models to better describe the
heterogeneity in field releases created by the local introduction of Wolbachia-infected
mosquitoes into the wild. This extension leads to nontrivial changes in its biological
dynamics and provides key insights for the field trial design.

We proposed a 2-PDE reaction-diffusion model for the infected and uninfected
mosquitoes. This system was simplified to a 1-PDE analysis equation to better under-
stand the dynamics of the complex 2-PDE system near the equilibrium. We derived
analytical results using the more manageable 1-PDE analysis equation and compared
them to the numerical results of the more accurate 2-PDE model near the equilibrium.

We first identified the threshold condition for establishing a Wolbachia invasion
wave, given a local release of infection. The obtained threshold condition is realized as
a bubble-shaped spatial distribution of infection, referred to as a critical bubble. Our
numerical results suggest that the critical bubble, which balances the reproduction
and diffusion dynamics, is an optimal spatial distribution of the infection to sustain
the infection, compared to other spatial configurations. We expect that such a critical
bubble may not be a unique phenomenon to the model at hand, and it can arise from
other systems with a bistable behavior and compact initial support.

We observed that the infection level at the release center of the balanced crit-
ical bubble (PDE threshold) is higher than the ODE threshold (p∗PDE ≈ 0.35 vs.
p∗ODE ≈ 0.23). This illustrates the impact of the nonhomogeneous mixing between
the infection groups and confirms the necessity of using the more realistic spatial
models for predicting the Wolbachia field releases.

When above the threshold condition, the proposed models give rise to the traveling
wave solutions. We analyzed the wave speed and the shape of the wave front using
both the 1-PDE and 2-PDE models. At the baseline, the wave speed is c ≈ 0.052, or
10.91 m/day in the dimensional parameters.

Our conclusions and calculations are based on the baseline parameters, which are
our best-guess estimates and naturally involve bias and uncertainty. Our sensitivity
analysis showed that the maternal transmission rate is the most important parame-
ter during the invasion process, including the threshold condition and traveling wave
speed. The results also uncover that the reproduction rates have a more significant im-
pact than the mosquito lifespan for invasion. These observations can inform decisions
on which Wolbachia strains will be most effective in creating a sustained infection.

This study is our preliminary attempt to explore how the spatial dynamic may
affect the prediction of Wolbachia field releases, which offers important insights that
would be otherwise neglected under the ODE setting. However, there are lots of as-
sumptions that we have made to be mathematically tractable. One major assumption
is that we only tracked the adult mosquitoes since our model is based on a 2-ODE
model that has been derived from a 9-ODE model through a model reduction process.
This leads to the caveat that the current models may not be suitable to predict field
trials that break the natural balance among different life stages or the sexual ratio
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1926 ZHUOLIN QU, TONG WU, AND JAMES M. HYMAN

of mosquitoes. In such a case, it may be worthwhile to derive from the full 9-ODE
model to include aquatic and male compartments for simulation purposes.

Furthermore, before applying this model to guide field releases of infected mos-
quitoes, the model must be extended to two spatial dimensions, where the infected
mosquitoes are released in a symmetrical bubble and the infection wave propagates in
a circular motion. Our future work will be to determine how the threshold condition
adapts accordingly in this case and see if the Wolbachia infection could be sustained
at the front of the infection wave.

Appendix A. Capturing the threshold for a 2-PDE model—Step 3. The
critical bubble distribution of infected mosquitoes is an unstable equilibrium solution
of the PDE model. Due to the instability and the stiffness of the system near this
state, it is a challenging numerical problem to identify p∗ in step 3 of the algorithm
described in section 5.3. We design the following root-finding problem to numerically
approximate the threshold condition with high accuracy.

The key to constructing a robust objective function for iteration is to characterize
the distinct dynamics when the infection level is above or below the threshold:

• When p̃ is slightly above the threshold p∗, let T1 → ∞ in step 1, and the
infection forms an unstable front (close to the critical bubble, but not con-
verging to it) for a while. Eventually, the unstable infection curve grows and
approaches the upper stable steady state, which creates a boundary layer at
x = 0 due to the boundary correction (4.11).
• When p̃ is slightly below the threshold p∗, let T1 → ∞, and the infection

converges and forms a stable bubble. Once the boundary condition is relaxed
in step 2, the infection collapses (as T2 →∞).

Employing these two observations, we design the following root-finding problem,
which is solved using the bisection method:

J (p̃) = 1− 2× {p(0, T2; p̃) < p̃}︸ ︷︷ ︸
Condition I

×
{
‖(p(·, T1; p̃)− p(·, T1 −∆t; p̃)‖l2

‖(p(·, T1 −∆t; p̃)‖l2
< 10−4

}
︸ ︷︷ ︸

Condition II

= 0,

where ∆t is the step size for temporal discretizations, and T1 and T2 are taken to be
sufficiently large. The brackets around the conditions give a 1 or 0 value, when the
condition is true or false, respectively.

Condition I in the objective function J (p̃) checks the infection level at the release
center, and condition II checks the relative convergence of the infection front. For
p̃ > p∗, condition I may fail if p̃ � p∗, and condition II may fail if p̃ ' p∗, and thus
J (p̃) = 1. For p̃ < p∗, condition I holds, and condition II holds for large T1, and thus
J (p̃) = −1. Although there is no exact root for J (p̃) = 0, by applying the bisection
method, we obtain an estimate for the threshold p∗ within an error tolerance < 10−5.

Appendix B. Identifying minimal release time for sustained infection.
As described in section 5.3, to identify the minimal release time, T ∗1 , for the point-
release process, we iterate on the duration of step 1 (release time T1) such that the
infection could be sustained and established in step 2 (final time T2). The iteration
can be summarized by the following root-finding problem:

K(T1; p̃) = 2× {p(0, T2;T1, p̃) > p̃} − 1 = 0.

Here, p̃ is the target infection level at the release center, and brackets operation returns
1 or 0 values depending on whether the condition inside is satisfied or not. If T1 > T ∗1 ,
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MODELING SPATIAL WAVES OF WOLBACHIA INVASION 1927

then the traveling wave will be established and the infection rate at the release center
will be greater in step 2 (K(T1; p̃) = 1). If T1 < T ∗1 , the infection will collapse in step
2, and K(T1; p̃) = −1. In our numerical simulations, we use T2 = T1 + 106. Similar to
the problem defined in Appendix A, although there is no exact root for K(T1; p̃) = 0,
given a fine enough time discretization ∆t in step 1, we could find an estimate for T ∗1
within the tolerance < ∆t.

Appendix C. Conclusions for imperfect maternal transmission. For a
general maternal transmission rate vw, the 2-PDE model is written as

∂Fu

∂t
= bfφ

′′
u

Fu

Fu +
µ′
fw

µ′
fu
Fw

(
1− Fu + Fw

Kf

)
Fu

+ vubfφ
′′
w

(
1− Fu + Fw

Kf

)
Fw − µ′fuFu +∇ · (D1∇Fu),

∂Fw

∂t
= vwbfφ

′′
w

(
1− Fu + Fw

Kf

)
Fw − µ′fwFw +∇ · (D2∇Fw),

and the corresponding nondimensionalized system (2.4) is modified as

ut =
u

u+ d v
(1− u− v)u+ (1−m)a(1− u− v)v − b u+ uxx,

vt = ma(1− u− v)v − b d v +Dvxx,
(C.1)

where we have used the notation m = vw to avoid the confusion with the state variable
v. The reduced 1-PDE analysis equation can be obtained by modified transformation
u+ v = 1− bd

ma + ε, v
u+v = p, and the 1-PDE equation (3.4) becomes

pt = hm(p) + pxx,

hm(p) =
bp
(
am(1− p)2 + ad2(m− 1)p2 − d(p− 1)(a(2m− 1)p+ p− 1)

)
am(1 + (d− 1)p)

.
(C.2)

Conclusions for threshold conditions. For the 1-PDE analysis equation (C.2), the
threshold condition p∗m is the root for the nonlinear equation

Hm(p) =

∫ p

0

hm(y)dy = −b
(
(d− 1)p

(
2(d− 1)2p2

(
d(ad− a+ 1)− a(d− 1)2m

)
− 3(d− 1)p

(
a(d− 1)2m+ 2d2 − d

)
+ 6d3

)
− 6d3 log((d− 1)p+ 1

)
/(6a(d− 1)4m) = 0,

and the critical bubble satisfies the IVP p′(x) = −(−2Hm(p))1/2, p(0) = p∗m.
For the 2-PDE threshold, the numerical algorithms described in the main text

(section 4.2.2) can be applied to (C.1) without modifications.

Conclusions for traveling wave. The methods and algorithms discussed in section
5.2 can be applied to both the 1-PDE and 2-PDE models here without changes.
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