

Abstract

Operator splitting methods have been applied to nonlinear partial differential

equations that involve operators of different nature. The main idea of these

methods is to decompose a complex equation into simpler sub-equations, which can

be solved separately. The main advantage of the operator splitting methods is that

they provide a great flexibility in choosing different numerical methods, depending

on the feature of each sub-problem. In this dissertation, we have developed highly

accurate and efficient numerical methods for several nonlinear partial differential

equations, which involve both linear and nonlinear operators.

We first propose a fast explicit operator splitting method for the modified

Buckley-Leverett equations which include a third-order mixed derivatives term

resulting from the dynamic effects in the pressure difference between the two phases.

The method splits the original equation into two equations, one with a nonlinear

convective term and the other one with high-order linear terms so that appropriate

numerical methods can be applied to each of the split equations: The high-order

linear equation is numerically solved using a pseudo-spectral method, while the

nonlinear convective equation is integrated using the Godunov-type central-upwind

scheme. The spatial order of the central-upwind scheme depends on the order of the

piecewise polynomial reconstruction: We test both the second-order minmod-based

reconstruction and fifth-order WENO5 one to demonstrate that using higher-order

spatial reconstruction leads to more accurate approximation of solutions.

We then propose fast and stable explicit operator splitting methods for two

phase-field models (the molecular beam epitaxy equation with slope selection and

the Cahn-Hilliard equation), numerical simulations of which require long time

computations. The equations are split into nonlinear and linear parts. The

nonlinear part is solved using a method of lines combined with an efficient large

stability domain explicit ODE solver. The linear part is solved by a pseudo-spectral

method, which is based on the exact solution and thus has no stability restriction on

the time step size.

We have verified the numerical accuracy of the proposed methods and

demonstrated their performance on extensive one- and two-dimensional numerical

examples, where different solution profiles can be clearly observed and are consistent

with previous analytical studies.

c©Copyright 2016

Zhuolin Qu

This work is licensed under the Creative Commons

Attribution-NonCommercial-NoDerivatives 4.0 International License.

To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-nd/4.0/.

Acknowledgement

First and foremost, I would like to express my special gratitude to my advisor Dr.

Alexander Kurganov for supporting me in so many ways during these past five years.

I really appreciate his contribution of time, ideas and sound advice to make my PhD

experience productive and stimulating. The passion and the joy he has with his

research has been so contagious and motivational for me that I wish one day I

would be a researcher that is as energetic, enthusiastic and hardworking as he is.

I would like to thank my collaborators Dr. Chiu-Yen Kao (Claremont McKenna

College) and Dr. Ying Wang (University of Oklahoma) for the collaboration of [1],

and Dr. Tao Tang (South University of Science and Technology of China) and

Yuanzhen Cheng (Tulane University) for co-authoring [2]. As a researcher at her

early stage of career, I really appreciate their great patience and joint-effort,

without which the work that presented in this dissertation would not be possible.

I also want to acknowledge Dr. Alina Chertock (North Carolina State

University) for the collaboration on the work [3] as well as being in my graduate

committee. She has shown me an archetype of a successful women researcher, and

from whom I have received generous support during different phases in my pursuit

of doctoral degree.

I would like to express my candid gratitude to Dr. Lisa Fauci, Dr. Kun Zhao

and Dr. Gustavo Didier for taking time to serve on my committee and give valuable

suggestions.

ii

I am deeply indebted to the faculty the Department of Mathematics, Dr.

Michelle Lacey, Dr. Xuefeng Wang, Dr. Dagang Yang, Dr. Oleksandr Gromenko,

Dr. Tai Ha, Dr. Mahir Can and many others who have shown great generosity and

helped me consciously or unconsciously.

I am particular grateful to Dr. James Mac Hyman, who shows continuous

support and care in the development of young researchers like me. I have truly

enjoyed and benefitted significantly from his inspiring lectures and discussions,

which offer me with a great variety of insights in different fields of mathematics.

My special thanks also go to Dr. Tewodros Amdeberhan, who is both a great

mentor and a genuine friend of mine. He has been my best role model for a good

teacher upon my first semester in Tulane. His enthusiasm and love for teaching has

impacted me so much on holding my own ethic to be a good educator. I also greatly

appreciate his sound advice and encouragement at various turning points during

these five years of my life, which have enabled me to keep my morale up.

I am thankful to the staff members Mrs. Geralyn Caradona, Mrs. Pamela

Philastre and Mr. Mark Brown for their help and advice during the day-to-day

graduate study.

It would be super hard to get through and stay sane in the graduate school

without my fellow peers. I am very appreciative to Shanshan Jiang, Dr. Lu Lu, Dr.

Shumo Cui, and Dr. Huicong Li for their altruistic help in numerous aspects of my

study and life. Thanks to Yuanzhen Cheng, Lin Jiu, Kui Zhang, Xiao Guan, Asma

Azizi (Soodeh) and so on for their company and support during my stay in Tulane.

In particular, I want to thank my dear Tong Wu for his constant and selfless

support in countless ways.

Finally, I would like to sincerely dedicate this dissertation to my parents, who

believed in my capability and have consistently offered their unconditional support.

iii

List of Tables

2.1 The 1-D linear accuracy test using the minmod-based reconstruction. . . 31

2.2 The 1-D linear accuracy test using the WENO5 reconstruction. 31

2.3 The 2-D linear accuracy test using the WENO5 reconstruction. 32

2.4 The nonlinear accuracy test using the minmod-based reconstruction. . . 33

2.5 The nonlinear accuracy test using the WENO5 reconstruction. 33

2.6 Examples 1–3: Comparison of the CPU times. 36

2.7 The values of (τ, uB) pairs used in the nine experiments reported in Figure

2.7. 37

3.1 CPU times for Examples 1–4 in Section 3.5. 59

3.2 Example 1: L1- and L∞-errors and experimental convergence rates at

t = 240. 65

3.3 Example 1: L1- and L∞-errors and experimental convergence rates ob-

tained with the fixed small splitting step ∆t = 10−3 at t = 240. 65

3.4 Example 2: L1- and L∞-errors and experimental convergence rates at

t = 30. 67

3.5 Example 4: L1- and L∞-errors and experimental convergence rates at

t = 20. 73

iv

List of Figures

2.1 Bifurcation diagram in the (τ, uB)-space for the flux functions f (solid

lines) and g (dashed lines). For both f and g, the upper curves represent

ũ and the lower curves represent u˜. 24

2.2 Nonlinear Accuracy Test: Solutions computed using the fifth-order WENO5

reconstructions on three different grids at the final time T = 0.125. . . . 33

2.3 Example 1: Solutions computed using the second-order minmod-based

and fifth-order WENO5 reconstructions (left); zoom in at the plateau area

(right). 35

2.4 Example 2: Solutions computed using the second-order minmod-based

and fifth-order WENO5 reconstructions (left); zoom in at the plateau area

(right). 35

2.5 Example 3: Solutions computed using the second-order minmod-based

and fifth-order WENO5 reconstructions (left); zoom in at the plateau area

(right). 36

2.6 The zoom-in view of the bifurcation diagram given in Figure 2.1 along with

the parameter values (marked by “×” signs) chosen in the nine experiments

reported in Figure 2.7. 38

v

2.7 Solutions of the MBL equation (2.5) with the f flux (2.2) (filled circles) and

g flux (2.3) (empty circles) computed at time T = 1.2 using N = 16384.

For each of the nine plots, the initial data (2.33) corresponds to the nine

(τ, uB) pairs given in Table 2.7 and also marked in Figure 2.6. 39

2.8 Example 4: Solution of the BL equation: top (left) and 3-D (right) views. 40

2.9 Example 4: Solution of the MBL equation: top (left) and 3-D (right) views. 40

2.10 Example 5, initial condition (2.36): Solution of the BL equation: top (left)

and 3-D (right) views. 41

2.11 Example 5, initial condition (2.36): Solution of the MBL equation: top

(left) and 3-D (right) views. 41

2.12 Example 5, initial condition (2.37): Solution of the BL equation: top (left)

and 3-D (right) views. 41

2.13 Example 5, initial condition (2.37): Solution of the MBL equation: top

(left) and 3-D (right) views. 42

3.1 Example 1: u computed with ∆t = 10−1. 62

3.2 Example 1: u computed with ∆t = 10−2 (solid line) and adaptive splitting

time-stepping with ∆tmin = 10−2, ∆tmax = 10−1 and α = 103 (dashed

line). 63

3.3 Example 1: (a) Energy evolution in a short time period; (b) Energy evo-

lution in a long time period; (c) Roughness development in a time period

t ∈ [0, 40]; (d) Roughness development in a long time period. ∆t = 10−1

(dashed dotted line), ∆t = 10−2 (solid line) and adaptive splitting time-

stepping with ∆tmin = 10−2, ∆tmax = 10−1 and α = 103 (dashed line). . 64

3.4 Example 1: Splitting step evolution. ∆t = 10−2 (solid line) and adaptive

splitting time-stepping with ∆tmin = 10−2, ∆tmax = 10−1 and α = 103

(dashed line). 64

3.5 Example 2: u computed with ∆t = 10−3. 66

vi

3.6 Example 2: |∇u| computed with ∆t = 10−3. 67

3.7 Example 2: (a) Energy evolution in a short time period; (b) Energy evo-

lution in a long time period; (c) Roughness development in a short time

period; (d) Roughness development in a long time period. ∆t = 10−3 (sol-

id line) and adaptive splitting time-stepping with ∆tmin = 10−3, ∆tmax =

10−2 and α = 103 (dashed line). 68

3.8 Example 2: Splitting step evolution. ∆t = 10−3 (solid line) and adaptive

splitting time-stepping with ∆tmin = 10−3, ∆tmax = 10−2 and α = 103

(dashed line). 68

3.9 Example 3: Contour plots of Ffree computed with ∆t = 10−1. 69

3.10 Example 3: (a) Energy evolution; (b) Roughness development; (c) Split-

ting step evolution. ∆t = 10−1 (solid line) and adaptive splitting time-

stepping with ∆tmin = 10−1, ∆tmax = 5 and α = 1 (dashed line). 69

3.11 Example 3: (a) The log-log scale plot of the energy evolution; (b) The

log-log scale plot of the interface height and roughness development; (c)

Mean height evolution. In (a)–(c), ∆t = 10−1. 70

3.12 Example 4: u computed with ∆t = 10−3 (left column) and adaptive

splitting time-stepping with ∆tmin = 10−3, ∆tmax = 10−2 and α = 102

(right column). 72

3.13 Example 4: (a) Energy evolution; (b) Roughness development; (c) Split-

ting step evolution. ∆t = 10−3 (solid line) and adaptive splitting time-

stepping with ∆tmin = 10−3, ∆tmax = 10−2 and α = 102 (dashed line). . 73

3.14 Example 5: u computed with a 128× 128 grid, ∆t = 10−3 (first column);

128× 128 grid, ∆t = 10−4 (second column); 256× 256 grid, ∆t = 10−3

(third column); 256× 256 grid, ∆t = 10−4 (fourth column). 74

3.15 Example 5: Same as in Figure 3.14, but using the sixth-order scheme for

(3.11). 75

vii

Contents

Acknowledgement ii

List of Tables iv

List of Figures v

1 Introduction 1

1.1 Modified Buckley-Leverett Equation 5

1.2 Phase-Field Models . 8

2 A Fast Explicit Operator Splitting Method for Modified Buckley-

Leverett Equations 13

2.1 Introduction . 14

2.2 Backgrounds . 17

2.2.1 One-Dimensional MBL Equation 18

2.2.2 Two-Dimensional MBL Equation 19

2.2.3 Bifurcation Diagram . 21

2.3 Fast Explicit Operator Splitting Method 24

2.3.1 Splitting Strategy . 25

2.3.2 Central-Upwind Schemes for Equation (2.27) 26

2.3.3 Pseudo-Spectral Method for Equation (2.28) 28

2.4 Numerical Results . 29

viii

2.4.1 Linear Accuracy Tests . 30

2.4.2 Nonlinear Accuracy Test . 32

2.4.3 High-Resolution via the WENO5 Reconstruction 33

2.4.4 Numerical Study of the Gravitational Effects 37

2.4.5 2-D Examples . 37

3 Fast and Stable Explicit Operator Splitting Methods for Phase-Field

Models 43

3.1 Introduction . 44

3.2 Finite-Difference Methods for (3.7) and (3.11) 48

3.2.1 Finite-Difference Schemes for ut = (u3
x)x 49

3.2.2 Finite-Difference Schemes for ut = ∇ · [|∇u|2∇u] 50

3.2.3 Finite-Difference Schemes for ut = ∆(u3) 52

3.2.4 Large Stability Domain Explicit ODE Solver 54

3.3 Pseudo-Spectral Methods for (3.8) . 56

3.3.1 One-Dimensional Pseudo-Spectral Method 56

3.3.2 Two-Dimensional Pseudo-Spectral Method 57

3.4 Adaptive Splitting Time-Stepping Strategy 58

3.5 Numerical Examples . 59

A Proofs of Theorems 3.2.4–3.2.6 76

A.1 Proof of Theorem 3.2.4 (1-D MBE Equation) 76

A.2 Proof of Theorem 3.2.5 (2-D MBE Equation) 77

A.3 Proof of Theorem 3.2.6 (2-D CH Equation) 79

References 81

ix

1

Chapter 1

Introduction

In this dissertation, we study the numerical methods for solving nonlinear partial

differential equations that arise in various applications and describe a wide range of

physical systems, ranging from the epitaxial decomposition of thin film to

multi-phase flow in oil reservoirs. In particular, we consider the differential

equations which, in the one-dimensional (1-D) case, take the form:

ut = Nu+ Lu, (1.1)

where u is the variable of interest, N is a nonlinear differential operator and L is a

linear differential operator.

Computing numerical solutions of equation (1.1) is an important and challenging

problem, especially in the case when high-order derivative terms present in the

linear operator L and strong nonlinearity is embedded in operator N . To obtain

accurate numerical solutions, one may first discretize the space variable for the

right-hand side (RHS) operators Nu+ Lu using high-order finite

difference/element/volume schemes, followed by applying high-order ODE solvers to

integrate in time. However, numerical computations using such approach may

sometimes too costly to achieve a desirable resolution.

2

A standard approach to solve such type of problem is to use an operator splitting

or fractional-step method. Roughly speaking, we approximate the solution of the full

complex problem (1.1) by alternatively solving between two simpler differential

equations: the linear equation

ut = Lu (1.2)

and the nonlinear one

ut = Nu, (1.3)

which can be solved separatively. We denote the exact solution operators associated

with equations (1.2) and (1.3) by SL and SN , respectively. Next, introducing a

(small) splitting step ∆t, the solution of the original equation (1.1) (which is

assumed to be available at time t) is evolved using one of the following splitting

methods:

• Lie splitting (first-order sequential splitting) [4]:

u(x, t+ ∆t) = SN (∆t)SL (∆t)u(x, t) +O((∆t)2) or

u(x, t+ ∆t) = SL (∆t)SS (∆t)u(x, t) +O((∆t)2),

• Strang splitting (second-order) [5–7]:

u(x, t+ ∆t) = SN
(

∆t

2

)
SL (∆t)SN

(
∆t

2

)
u(x, t) +O((∆t)3) or (1.4)

u(x, t+ ∆t) = SL
(

∆t

2

)
SN (∆t)SL

(
∆t

2

)
u(x, t) +O((∆t)3),

and higher-order splitting methods are proved to involve at least one backward time

step size in order to achieve order greater than two [8,9], which may cause numerical

instability for time irreversible problems. Thus, to bypass the order-barrier, one

may either use a linear combination of the low-order splitting methods such as

3

• Third order splitting [10]:

u(x, t+ ∆t) =
2

3

(
SN
(

∆t

2

)
SL (∆t)SN

(
∆t

2

)
+ SL

(
∆t

2

)
SN (∆t)SL

(
∆t

2

))
− 1

6
(SN (∆t)SL (∆t) + SL (∆t)SS (∆t))u(x, t) +O((∆t)4)

(see also [11]) or use the splitting methods containing complex time step size with

positive real parts, which have been systematically developed in [12–17]. In this

dissertation, we use the second-order Strang splitting method (1.4).

In practice, to implement the splitting method, the exact solution operators SL

and SN are to be substituted by their numerical approximations. Note that the

linear (1.2) and nonlinear (1.3) subproblems are of different nature. Therefore, as a

main advantage of the operator splitting technique, appropriate high-resolution

numerical methods can be applied to each of the split problem.

The operator splitting technique has been successfully applied in the context of

convection-diffusion equations, which is a classical equation of the form (1.1) and in

1-D case, it reads as

ut + f(u)x = εuxx. (1.5)

Here, u is an unknown variable of interest, f is a nonlinear convection flux and ε > 0

is the diffusion coefficient. To design an accurate and efficient numerical method for

the convection diffusion equation (1.5), especially in the convection-dominated case,

one needs to overcome the difficulty of keeping the balance between the convection

and diffusion terms: many schemes either have extensive numerical viscosity, which

makes the solution under-resolved, or introduce spurious oscillations near sharp

shock profiles. To numerically preserve this delicate balance, fast explicit operator

splitting (FEOS) methods were proposed in [18–21] (see also [22]), where equation

4

(1.5) was decoupled into a nonlinear hyperbolic equation

ut + f(u)x = 0 (1.6)

and a linear parabolic equation

ut = εuxx. (1.7)

The corresponding exact solution operators SN and SL were then replaced by their

numerical approximations.

As the main advantage of operator splitting methods, there is great flexibility in

choosing different numerical methods for both parts, depending on the nature of

subproblems. Equation (1.6) with the nonlinear flux function f(u) is a hyperbolic

system of conservation law, and it admits non-smooth solutions (shocks and

rarefaction waves), even when a smooth initial condition is prescribed. A wide

variety of shock capturing methods have been designed to accurately capture the

ensuing non-smooth waves, see, e.g., the monographs [23–28] and reference therein.

For the problem at hand, a finite-volume based hyperbolic solver seems to be a

natural choice and in particular, the second-order Godunov-type central-upwind

schemes [29–31] are attractive options, because they are simple, robust,

Riemann-problem-solver-free, yet high-resolution methods and can be used as as

“black-box” solvers for general (multidimensional) hyperbolic systems of

conservation laws. For the parabolic linear equation (1.7), several efficient numerical

methods can be designed. First, it can be reduced to a system of ODEs using the

method-of-line technique and then integrated by appropriate ODE solvers: implicit

one like [32,33], explicit ones with large stability domain [34–37], or implicit-explicit

one as [32,38]. Another possibility is to solve (1.7) (practically) exactly using the

heat kernel to evolve the intermediate solution at each linear splitting step as it was

proposed in [19–21]. A third approach is to employ the pseudo-spectral framework.

5

In all of these cases, there is no enforced stability restriction on the size of the linear

step, hence, large splitting time steps can be made without destabilize the

algorithm. As it has been pointed out in [22], the pseudo-spectral method may be

especially advantageous when dealing with periodic boundary conditions, since

when it comes to numerically implementations, one can take the advantage of the

FFT algorithm to significantly increase the efficiency of the algorithms. Notice that,

due to the CFL condition, the time step used by the finite-volume methods in the

nonlinear part may be smaller than ∆t/2 (where ∆t is the splitting time step size in

(1.4)). In this case, several nonlinear steps are taken within in one splitting step.

In this dissertation, our goal is to develop highly accurate and efficient numerical

methods for several nonlinear PDEs, including modified Buckley-Leverett (MBL)

equation and two phase-field models: the molecular beam epitaxy (MBE) equation

with slope selection and the Cahn-Hilliard (CH) equation. The main approach is

based on the aforementioned FEOS methods. Due to the distinct nature of the

associated nonlinear parts, we construct different sets of numerical schemes, which

are outlined separately in the following two sections.

1.1 Modified Buckley-Leverett Equation

The first nonlinear PDE that we consider in this dissertation is MBL equation.

The classical Buckley-Leverett (BL) equation was firstly proposed to describe

two-phase fluid flow in porous media such as the secondary oil recovery by water

injection in oil reservoir. In the 1-D case, the classical BL equation is a scalar

conversation law:

ut + F (u)x = 0,

6

with the flux function F (u) = f(u) defined as

f(u) =

0, u < 0,

u2

u2 +M(1− u)2
, 0 ≤ u ≤ 1,

1, u > 1.

(1.8)

In this model, u denotes the water saturation, f is water fractional flow rate

function and M is the viscosity ratio between water and oil. When a gravitational

effect is taken into account, then a modified flux F (u) = g(u), where

g(u) = f(u)(1− C(1− u)2), (1.9)

and C is a positive constant, should be used. It is well-known that the entropy

solution of the Riemann initial value problem preserves the monotonicity of the

initial data. However, the experiments of two-phase flow in porous medium reveal

complex overshoot behavior, and the water saturation may develop nonmonotone

profiles even with the initial data being monotone. This suggests that a more

accurate model is needed to capture such phenomenon.

The MBL equation was then derived, where a third-order mixed derivatives term

is included to describe the dynamic capillary pressure. In the 1-D case, the MBL

equation reads:

ut + F (u)x = εuxx + ε2τuxxt, ε > 0, τ > 0, (1.10)

where F is given by either (1.8) or (1.9). This equation is of pseudo-parabolic type.

The existence condition for traveling wave solutions which violate the Oleinik

entropy condition, that is, the so-called nonclassical solutions, is reviewed in

Chapter 2.

7

To numerically capture solutions of both the classical BL and MBL equations,

one has to deal with the difficulties relate to the presence of high-order derivatives

term on the RHS of (1.10). As it has been discussed before, explicit methods using

direct finite-difference discretization may be inefficient and a fine mesh is needed to

achieve high accuracy and resolve the details in the nonmonotone solution profile.

Moreover, additional difficulties are related to the fact that the fluxes (1.8) and

(1.9) are nonconvex, and solutions of nonconvex conservation laws computed by

high-order methods may fail to converge the physical relevant solution, the entropy

solution.

Several numerical methods have been proposed in the literature: First-order

finite difference schemes was presented in [39] for BL equation; Second- and

third-order Godunov-type staggered central schemes were developed in [40,41] to

capture the nonclassical solutions of the 1-D MBL. In Chapter 2, we introduce a

highly accurate and efficient method for (1.10) and then to extend it to a more

numerically demanding 2-D case. We follow the idea of FEOS methods and split the

MBL equation (1.10) into two simpler equations: the linear equation

ut = εuxx + ε2τuxxt (1.11)

and the nonlinear one

(u− ε2τuxx)t + F (u)x = 0. (1.12)

We then solve the exact solution operator associated with the high-order linear

equation (1.11) using a pseudo-spectral framework, while the nonlinear convective

equation (1.12) is integrated using the Godunov-type central-upwind scheme. The

spatial order of the central-upwind scheme hinges on the order of the piecewise

polynomial reconstruction, hence to achieve high resolution, we apply both the

second-order minmod-based reconstruction as well as the fifth-order WENO5 one.

8

We test the performance of the FEOS method on a number of 1-D and 2-D

numerical examples, and the numerical results clearly demonstrate that the use of

the higher-order spatial reconstruction leads to substantially higher resolution of

nonclassical solutions. While the results obtained using the minmod-based piecewise

linear reconstruction are comparable to those reported in [40,41], the proposed

method combined with the fifth-order WENO5 reconstruction outperforms its

counterparts as it is clearly demonstrated in our 1-D numerical experiments.

The detailed descriptions of the FEOS methods for MBL equation are given in

Chapter 2.

1.2 Phase-Field Models

The second type of nonlinear PDEs that we study in this dissertation involves two

equations within the family of phase-field models. The phase field models were

originally introduced to describe the interfacial phenomena, and there are two

models have attracted much attention: the molecular beam epitaxy (MBE) equation

with slope selection and the Cahn-Hilliard (CH) equation.

MBE equation with slope selection models the thin film epitaxy process, in

which molecular beams are deposited onto a crystalline substrate and form a thin

epitaxial film. In 1-D case, MBE equation with slope selection reads as

ut − f(ux)x = −δuxxxx, δ > 0, (1.13)

where u is a scaled height function of epitaxial growth of thin films and δ > 0 is a

surface diffusion constant.

CH equation models process of phase separation, in which two components of a

mixed fluid spontaneously separate from each other and form continuous domain

9

separately. In 1-D case, CH equation reads as

ut − f(u)xx = −δuxxxx, δ > 0, (1.14)

where u represents the binary concentration of the mixed fluid, and δ estimates the

interfacial width across two domains, which serves as a diffusion coefficient.

In this dissertation, we consider

f(ϕ) = ϕ|ϕ|2 − ϕ,

for which the two phase-field models (1.13) and (1.14) become

ut = (u3
x)x − uxx − δuxxxx, δ > 0, (1.15)

and

ut = (u3)xx − uxx − δuxxxx, δ > 0. (1.16)

An important feature of equations (1.15) and (1.16) are that they can be viewed

as the gradient flows of the energy functionals

E(u) =

∫
Ω

[
δ

2
(uxx)

2 +
1

4

(
(ux)

2 − 1
)2
]
dx,

and

E(u) =

∫
Ω

[
δ

2
(ux)

2 +
1

4

(
u2 − 1

)2
]
dx,

respectively. As it has been shown in [42,43], both energy functionals obey the

energy decay property in time:

E(u(t)) ≤ E(u(s)), ∀t ≥ s. (1.17)

10

Development of highly accurate and efficient numerical methods for (1.15) and

(1.16) involve difficulties from various aspects. Similar to the convection-diffusion

equation (1.5), due to the presence of high-order derivatives on the RHS’s, explicit

schemes usually suffer severe stability restrictions on the size of time step, and

numerical simulations of phase-field models usually require long time computations

to attain the steady-states that of interests, thus an efficient and accurate numerical

method is desired. What’s more, explicit methods may also fail to satisfy the

essential energy decay property persisted by the physical system, hence the property

of being highly stable is also crucial to the design of a robust method.

In Chapter 3, we develop accurate, efficient and robust explicit methods for both

(1.15) and (1.16) subject to the periodic boundary conditions. The general idea is

based on the aforesaid FEOS methods.

For MBE equation (1.15), we decompose it into the nonlinear,

ut = (u3
x)x, (1.18)

and linear,

ut = −uxx − δuxxxx, (1.19)

parts, and the corresponding energy functionals

EN (u) =
1

4

∫
Ω

(ux)
4dx

and

EL(u) =

∫
Ω

(
δ

2
(uxx)

2 − 1

2
(ux)

2 +
1

4

)
dx

also follow the energy decay principle (1.17). We then introduce a proper splitting

time step and at each splitting step ∆t, and the solutions are evolved using Strang

splitting method (1.4), where SN and SL are exact solution operators associated

11

with equation (1.18) and (1.19), respectively. Similarly, for CH model, we divide the

equation (1.16) into two parts and obtain the same linear part (equation (1.19)) and

the nonlinear part

ut = (u3)xx. (1.20)

We also have the associated energy functions,

EN (u) =
1

4

∫
Ω

u4dx

and

EL(u) =

∫
Ω

(
δ

2
(ux)

2 − 1

2
u2 +

1

4

)
dx

decay.

In order to implement the splitting method (1.4), we need to approximate the

solution operators SN and SL, which are of diverse attributes and can be integrated

by two different numerical methods: The nonlinear subproblems (1.18) and (1.20)

are firstly semi-discretized using finite difference schemes in spacial variables and

then integrated in time using a large stability domain explicit ODE solver called

DUMKA3, in which a step size control mechanism is implemented to largely

increase the efficiency of the solver. For the common linear subproblem (1.19), we

apply the accurate pseudo-spectral method over the entire splitting time step ∆t.

Additionally, since the efficiency of splitting methods hinges on the size of its

splitting time step, therefore to practically achieve high efficiency, we propose a

roughness-dependent adaptive splitting time-stepping strategy, such that the quick

phase transitions can be accurately captured using a small splitting time step but a

large splitting time step is enabled at other times, especially when the solution is

close to its steady state. We demonstrate the performance of the proposed methods

on a number of 1-D and 2-D numerical examples, where different stages of phase

12

motions can be clearly observed.

13

Chapter 2

A Fast Explicit Operator Splitting

Method for Modified

Buckley-Leverett Equations

In this chapter, we propose a fast explicit operator splitting method to solve the

modified Buckley-Leverett equations which include a third-order mixed derivatives

term resulting from the dynamic effects in the pressure difference between the two

phases. The method splits the original equation into two equations, one with a

nonlinear convective term and the other one with high-order linear terms so that

appropriate numerical methods can be applied to each of the split equations: The

high-order linear equation is numerically solved using a pseudo-spectral method,

while the nonlinear convective equation is integrated using the Godunov-type

central-upwind scheme. The spatial order of the central-upwind scheme depends on

the order of the piecewise polynomial reconstruction: We test both the second-order

minmod-based reconstruction and fifth-order WENO5 one to demonstrate that

using higher-order spatial reconstruction leads to more accurate approximation of

solutions. A variety of numerical examples in both one and two space dimensions

14

show that the solutions may have many different saturation profiles depending on

the initial conditions, diffusion parameter, and the third-order mixed derivatives

parameter. The results are consistent with the study of traveling wave solutions and

their bifurcation diagrams.

2.1 Introduction

The Buckley-Leverett (BL) equation was proposed in [44] to describe two-phase

fluid flow in porous media. In particular, the BL equation is used to model the

secondary oil recovery by water injection in oil reservoir. In the one-dimensional

(1-D) case, the classical BL equation is a scalar conversation law:

ut + F (u)x = 0, (2.1)

with the flux function F (u) = f(u) defined as

f(u) =

0, u < 0,

u2

u2 +M(1− u)2
, 0 ≤ u ≤ 1,

1, u > 1.

(2.2)

In this model, u denotes the water saturation, f is water fractional flow rate

function and M is the viscosity ratio between water and oil. When a gravitational

effect is taken into account, then a modified flux F (u) = g(u), where

g(u) = f(u)(1− C(1− u)2), (2.3)

and C is a positive constant, should be used.

15

Practically relevant initial data for the BL equation (2.1) are Riemann data:

u(x, 0) =

uB, x ≤ 0,

0, x > 0,

(2.4)

where uB is a positive constant representing an initial water saturation in the fluid

injected into the oil reservoir. It is well-known that the entropy solution of the

initial value problem (IVP) (2.1)–(2.4) preserves the monotonicity of the initial

data. However, the experiments [45, Figure 5] of two-phase flow in porous medium

reveal complex infiltration profiles, which may involve an overshoot, that is, the

water saturation may develop nonmonotone profiles even with the initial data being

monotone. This suggests that the classical BL equation (2.1) needs to be modified.

In [46–48], the dynamic capillary pressure is introduced to derive the modified

Buckley-Leverett (MBL) equation which includes a third-order mixed derivatives

term (see §2.2). In the 1-D case, the MBL equation reads:

ut + F (u)x = εuxx + ε2τuxxt, ε > 0, τ > 0, (2.5)

where F is given by either (2.2) or (2.3). This equation is of pseudo-parabolic type.

The existence condition for traveling wave solutions which violate the Oleinik

entropy condition, that is, the so-called nonclassical solutions of (2.5) is discussed in

[39]. The phase plane analysis is performed in [49] to study the properties of the

traveling waves corresponding to undercompressive shocks. In [40], the finite

domain and half-line problem are compared: The solution of the finite domain [0, L]

problem converges to that of the half-line [0,∞) problem exponentially fast as

L→∞ in the sense of a weighted H1-norm. Therefore, it provides justification to

use the numerical solution on the finite domain to approximate the solution of the

half-line problem.

16

When capturing solutions of both the classical BL and MBL equations

numerically, one has to deal with the difficulties related to the fact that the fluxes

(2.2) and (2.3) are nonconvex. As it was demonstrated in [50], solutions of

nonconvex (systems of) conservation laws computed by high-order methods may fail

to resolve composite waves and thus may fail to converge to the entropy solution.

To overcome this difficulty, a simple adaptive strategy was proposed in [50]: A more

diffusive version of the scheme has to be applied near the flux inflection points (this

is achieved by using a more diffusive nonlinear limiter there). When the MBL

equation is integrated numerically, an additional difficulty is related to the presence

of high-order terms on the right-hand side (RHS) of (2.5): It is well-known that in

this case, explicit methods may be inefficient especially when a fine mesh is used to

accurately capture small scale details of the solution.

Several numerical methods for the MBL equation have been proposed. In [39], a

first order finite difference scheme was presented. A more accurate approach has

been advocated in [40,41], where second- and third-order Godunov-type staggered

central schemes were developed to capture the nonclassical solutions of the 1-D

MBL equation (2.5).

The main goal of this chapter is to develop a highly accurate and efficient

method for (2.5) and then to extend it to a more numerically demanding 2-D case.

Our approach is based on the fast explicit operator splitting method proposed in

[20,22,51] to efficiently solve (systems of) convection-diffusion equations and

incompressible Navier-Stokes equations.

The main idea of our method is to split the MBL equation (2.5) into two simpler

equations: the nonlinear equation

(u− ε2τuxx)t + F (u)x = 0 (2.6)

17

and the linear one:

ut = εuxx + ε2τuxxt. (2.7)

We then solve the convection-type equation (2.6) using the Godunov-type

central-upwind scheme [29,30], while the high-order linear equation (2.7) is

integrated exactly using a pseudo-spectral framework as it was done in [22, Section

4]. The order of the central-upwind schemes is determined by the order of the

piecewise polynomial reconstruction (see, e.g., [29, 30]). We use both the

second-order minmod-based piecewise linear and the fifth-order WENO5

reconstructions and demonstrate that the use of the higher-order spatial

reconstruction leads to substantially higher resolution of nonclassical solutions.

While the results obtained using the minmod-based piecewise linear reconstruction

are comparable to those reported in [40,41], the proposed method combined with

the fifth-order WENO5 reconstruction outperforms its counterparts as it is clearly

demonstrated in our 1-D numerical experiments.

The organization of this chapter is as follows. In Section 2.2, we revisit the 1-D

MBL equation and derive the 2-D MBL equation. In Section 2.3, a fast explicit

operator splitting method for both 1-D and 2-D MBL equations is introduced.

Numerical accuracy verification of the proposed method is provided Section 2.4,

where the performance of the fast explicit operator splitting method is tested on a

number of 1-D and 2-D numerical examples.

2.2 Backgrounds

In this section, we re-derive the 1-D MBL equation (the Hassanizadeh-Gray model)

and extend it to the 2-D case. We also discuss a classification of different types of

solutions of the Riemann problem (2.5), (2.4).

18

2.2.1 One-Dimensional MBL Equation

Consider the two-phase water-oil flow in an isotropic and homogeneous porous

medium. Let Si (i = o,w) be the saturations of the oil and water phases,

respectively. Then the conservation of mass yields

φ
∂Si
∂t

+
∂qi
∂x

= 0, i = o,w, (2.8)

where qi denotes the specific discharge of oil/water and φ denotes the porosity of

the medium. By Darcy’s law [52], qi is proportional to the gradient of the phase

pressure Pi :

qi = −kkri(Si)
µi

∂Pi
∂x

, i = o,w, (2.9)

where k denotes the absolute permeability, kro and krw stand for the relative

permeabilities of oil and water, respectively, and µo and µw denote their viscosities.

The capillary pressure Pc defines the difference in the pressures of the two phases:

Pc = Po − Pw.

In [46–48], the dynamic capillary pressure was defined as

Pc = pc(Sw)− φτ ∂Sw

∂t
, (2.10)

where pc(Sw) is the static capillary pressure, τ is a positive constant and ∂Sw

∂t
is the

dynamic effects. Assume that the medium is completely saturated, that is,

So + Sw = 1. (2.11)

19

Combining (2.8)–(2.11), a general form of the MBL equation is (see [39,40,53] for

details)

∂u

∂t
+
∂F (u)

∂x
= − ∂

∂x

{
H(u)

∂

∂x

(
J(u)− τ ∂u

∂t

)}
, (2.12)

where u = Sw is the saturation of water, and F , H, J are functions of u; the flux

function F is equal to either f given by (2.2) or g given by (2.3).

In this chapter, we consider the MBL equation (2.5), which is a version of (2.12)

with the linearized RHS, obtained by taking

H(u) = ε2 and J(u) = −u
ε
,

see [39, 40,53].

2.2.2 Two-Dimensional MBL Equation

In this section, we extend the 1-D MBL equation to its 2-D version (the 2-D BL

equation was derived in [54], also see [55]).

If we consider the flow where imbibition takes places under influence of gravity

[56], then the mass balance gives

φ
∂(ρiSi)

∂t
+∇ · (ρiqi) = 0, i = o,w,

where ρo and ρw denote the density of oil and water phases, both of which are

considered to be incompressible, so

φ
∂Si
∂t

+∇ · (qi) = 0, i = o,w. (2.13)

We again assume that the medium is completely saturated, that is, (2.11) is

20

satisfied. This, in turn, gives

∇ · (qo + qw) = ∇ · q = 0. (2.14)

Throughout this chapter, we assume that q = Const.

By Darcy’s law, the momentum balance equation is

qi = λi(∇Pi + ρig̃ez), (2.15)

where

λi = −kkri(Si)
µi

, (2.16)

g̃ is a gravitational constant and ez is a unit vector in the z-direction.

Combining (2.13)–(2.15) with the same capillary pressure formulation (2.10),

which was used in the 1-D case, the following model is obtained:

ut +∇·
[
f(u)

q

φ
− f(u)(1− u)2k(ρw − ρo)g̃

µoφ
ez

]
= −∇·

[
H(u)∇(J(u)− τut)

]
, (2.17)

where f is given by (2.2) with M = µw/µo,

H(u) =
k

µo

f(u)(1− u)2 and J(u) =
pc(u)

φ
.

This is a general form of the 2-D MBL equation, which can be rewritten as follows.

We use q = (q1, q2)T to rescale the space variables,

x
φ

q1

→ x, z
φ

q2

→ z,

21

take φ = O(ε), and denote

M :=
µw

µo

, C :=
k(ρw − ρo)g̃

µoq2

.

Then, equation (2.17) reduces to

ut +∇ · [f(u)(1, 1)T − Cf(u)(1− u)2ez] = ε∆u+ ε2τ∆ut,

which can be rewritten as

ut + F (u)x +G(u)z = ε∆u+ ε2τ∆ut (2.18)

where F (u) = f(u) and G(u) = g(u) are given by (2.2) and (2.3), respectively. This

equation is a modification of the classical 2-D BL equation

ut + F (u)x +G(u)z = 0, (2.19)

when the capillary pressure in (2.10) is taken to be constant.

2.2.3 Bifurcation Diagram

Our goal is to understand the nature of solutions of the Riemann problem (2.5),

(2.4) for different values of the initial parameter uB. To this end, we follow [39] and

study the traveling wave solutions of (2.5).

For τ > 0, we look for a traveling wave solution u(η), where η = (x− st)/ε.

Substituting u(η) into (2.5) results in the following ODE:

−su′ + (F (u))′ = u′′ − sτu′′′. (2.20)

22

This equation is to be solved subject to the boundary conditions at infinities,

u(−∞) = uB, u(∞) = 0, (2.21)

which together with the Rankine-Hugoniot condition determine the traveling wave

speed:

s =
F (uB)− F (0)

uB − 0
=
F (uB)

uB
.

We then integrate equation (2.20) over (η,∞) and reduce the order by one:

−su+ F (u) = u′ − sτu′′. (2.22)

It was proved in [39] that existence of the traveling wave solution satisfying (2.22),

(2.21) depends on the parameter τ in the following manner. There exists a critical

value τ ∗F such that for all τ ∈ [0, τ ∗F], there exists a solution of (2.22), (2.21) with

uB = αF , where αF is the unique root of the equation

F ′(u) =
F (u)

u
.

For τ > τ ∗F , there exists a unique value of ũ > αF such that the solution of the

boundary value problem (BVP) (2.22), (2.21) with uB = ũ exists. For uB < ũ, the

solution of (2.22), (2.21) will exist only if uB < u˜, where u˜ is the unique root of the

following equation:

F (r)− F (ũ)

ũ
r = 0, 0 < r < ũ. (2.23)

For a given τ , the values of ũ and u˜ can be found as follows. Since the traveling

wave (when exists) is a decreasing function of η, we perform the following change of

23

variables: z(u) = −u′(η(u)), which transforms equation (2.22) into

sτzz′ + z = su− F (u), u ∈ (0, uB). (2.24)

Since we have assumed that u(η) is decreasing, z(u) > 0 for all u ∈ (0, uB).

Moreover,

z(0) = z(uB) = 0. (2.25)

We therefore need to find uB > αF satisfying the above conditions. This can be

done by applying a shooting method to the BVP (2.24), (2.25), and the obtained uB

is the desired value of ũ. After this, we can find the corresponding value of u˜ by

(numerically) solving equation (2.23).

We now take particular examples of F = f given by (2.2) and F = g given by

(2.3) with M = 1/2 and C = 2 and numerically compute αf , αg, τ
∗
f , τ ∗g , and the

values of ũ and u˜ for τ uniformly distributed in the interval [0, 5]. The obtained

results are summarized in the bifurcation diagram shown in Figure 2.1. Notice that

when τ ≤ τ ∗, both ũ and u˜ are equal to α.

Based on the bifurcation diagram in Figure 2.1, three qualitatively different

types of solution profiles of the Riemann problem (2.5), (2.4) are possible (all of

them are illustrated in the numerical examples presented in Section 2.4):

(i) If uB > ũ, then the left state uB is connected to ũ through a rarefaction wave,

followed by a shock that jumps from ũ down to 0;

(ii) If u˜ < uB < ũ, then the solution jumps up from uB to ũ through a shock, and

then jumps down from ũ to 0 through another shock;

(iii) If uB < u˜, then the solution consists of a single shock that connects uB with 0.

Remark 2.2.1 Notice that nonclassical solutions of the Riemann problem (2.5),

(2.4) will correspond to nonmonotone solutions of the BVP (2.22), (2.21), obtained

24

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

u B

τ

bifurcation diagram

τ*
g
→ ←τ*

f

Figure 2.1: Bifurcation diagram in the (τ, uB)-space for the flux functions f (solid lines) and g (dashed
lines). For both f and g, the upper curves represent ũ and the lower curves represent u˜.

in Case (ii) above.

2.3 Fast Explicit Operator Splitting Method

There are many numerical methods for convection-diffusion equations, which arise

in a wide variety of applications. However, in the convection dominated case, many

schemes either have extensive numerical viscosity, which makes the solution

under-resolved, or introduce spurious oscillations near sharp shock profiles. An

attempt to preserve a delicate balance between the convection and diffusion terms

was made in [19,20,22,51], where a fast explicit operator splitting method was

proposed. In this section, we will use the same splitting idea to design new

numerical schemes for the MBL equations. For the sake of brevity, we will only

present the 1-D method (its extension to the 2-D case is rather straightforward).

25

2.3.1 Splitting Strategy

To apply splitting methods, we first combine the time derivative terms, that is, we

rewrite the MBL equation (2.5) as

(u− ε2τuxx)t + F (u)x = εuxx. (2.26)

We then split equation (2.26) into two simpler equations: the nonlinear

convection-type equation

(u− ε2τuxx)t + F (u)x = 0 (2.27)

and the linear diffusion-type equation

(u− ε2τuxx)t = εuxx, (2.28)

and denote the exact solution operators associated with equations (2.27) and (2.28)

by SN and SL, respectively.

Let us assume that at time t, the solution of the original MBL equation (2.26) is

available. We then introduce a time step ∆t and evolve the solution from t to t+ ∆t

using the second-order Strang splitting method:

u(x, t+ ∆t) = SN
(

∆t

2

)
SL (∆t)SN

(
∆t

2

)
u(x, t) +O((∆t)3).

To implement the splitting method in practice, the exact solution operators SN and

SL are to be replaced by their numerical approximations. Our particular choice of

the required nonlinear and linear solvers are described in Sections 2.3.2 and 2.3.3,

respectively.

26

2.3.2 Central-Upwind Schemes for Equation (2.27)

In order to develop a numerical method for the nonlinear convection-type equation

(2.27), we first introduce an intermediate variable v and rewrite equation (2.27) as a

system of two equations:

vt + F (u)x = 0, (2.29)

u− ε2τuxx = v. (2.30)

We then solve equation (2.29) using a semi-discrete finite-volume method. To

this end, we introduce a uniform spatial grid xα := α∆x, the finite volume cells

Ij := [xj− 1
2
, xj+ 1

2
], and the cell averages

vj(t) :=
1

∆x

∫
Ij

v(x, t) dx,

which are evolved in time by solving the following systems of ODEs:

d

dt
vj(t) = −

Hj+ 1
2
(t)−Hj− 1

2
(t)

∆x
, (2.31)

where Hj+ 1
2

are numerical fluxes. We use the central-upwind fluxes proposed in [30]:

Hj+ 1
2
(t) :=

a+
j+ 1

2

F (u−
j+ 1

2

)− a−
j+ 1

2

F (u+
j+ 1

2

)

a+
j+ 1

2

− a−
j+ 1

2

+
a+
j+ 1

2

a−
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

[
u+
j+ 1

2

− u−
j+ 1

2

]
, (2.32)

where all of the quantities on the RHS depend on time, but from now on we omit

this dependence for the sake of brevity.

In (2.32), u±
j+ 1

2

are the right- left-sided point values of the piecewise polynomial

reconstruction of u at x = xj+ 1
2
. This reconstruction is obtained from the cell

averages uj(t) := 1
∆x

∫
Ij
u(x, t) dx, which are assumed to be available at time t. A

27

formal spatial order of the semi-discrete scheme (2.31), (2.32) is determined by the

formal order of the reconstruction. In this chapter, we use either a second-order

scheme obtained with the help of a generalized minmod-based reconstruction (see

[57–60]) or a fifth-order scheme, for which the values of u±
j+ 1

2

are computed using the

WENO5 approach (see, e.g., [61, 62]). The right- and left-sided local speeds of

propagation, a±
j+ 1

2

, are determined using the following estimates (see [50]):

a+
j+ 1

2

= max
{

max
u∈[m

j+ 1
2
,M

j+ 1
2

]
{F ′(u)}, 0

}
, a−

j+ 1
2

= min
{

min
u∈[m

j+ 1
2
,M

j+ 1
2

]
{F ′(u)}, 0

}
,

where mj+ 1
2

:= min{u−
j+ 1

2

, u+
j+ 1

2

} and Mj+ 1
2

:= max{u−
j+ 1

2

, u+
j+ 1

2

}.

Finally, a fully discrete scheme for (2.29) is obtained by applying an ODE solver

to the ODE system (2.31). In our numerical experiments, we have used the

third-order strong stability preserving Runge-Kutta (SSP-RK) method (see [63,64]).

At each stage of SSP-RK method, as long as the new values of v are obtained,

the elliptic equation (2.30) is to be solved to update u. Since (2.30) is a linear

equation with the periodic boundary conditions, it can be exponentially accurately

and efficiently solved using the pseudo-spectral method. To do so, we first use the

Fast Fourier Transform (FFT) algorithm to compute the discrete Fourier coefficients

{v̂m} from the cell averages {vj} and substitute the Fourier expansions

u(x) =
∑
m

ûme
imx and v(x) =

∑
m

v̂me
imx

into (2.30). We then obtain a simple algebraic equation for the discrete Fourier

coefficients ûm:

ûm − ε2τ(ik)2ûm = v̂m,

and thus,

ûm =
v̂m

1 + ε2τk2
,

28

for all m. At the end, we recover the cell averages {uj} from the Fourier coefficients

{ûm} using the inverse FFT algorithm.

Remark 2.3.1 As it has been mentioned in Section 2.1, the solution computed by

a high-order central-upwind scheme may fail to resolve composite waves and thus

may not converge to the entropy solution. This was discovered in [50], where a

simple adaptive strategy was proposed to overcome this difficulty: A more diffusive

nonlinear limiter (the most diffusive minmod limiter [57–60] with the parameter 1)

has to be applied near the flux inflection points. We have implemented this adaptive

strategy to compute the numerical solutions presented in Section 2.4, but in fact it

was not necessary in any of the studied numerical examples. Therefore, in Section

2.4, we present the results obtained by the direct implementation of the

central-upwind scheme described here.

2.3.3 Pseudo-Spectral Method for Equation (2.28)

Since equation (2.28) is linear, a pseudo-spectral method would lead to a highly

accurate approximation of the solution operator SL. Similarly to the way equation

(2.30) was solved in Section (2.3.2), we first use the FFT algorithm to compute the

discrete Fourier coefficients {ûm} from the available cell averages {uj} and

approximate u at time t by its Fourier expansion:

u(x, t) ≈
∑
m

ûm(t) eimx.

Substituting this into (2.28) results in the following simple linear ODEs for the

discrete Fourier coefficients:

d

dt

[
ûm(t)− ε2τ(im)2ûm

]
= ε(im)2ûm,

29

which can be solved exactly on the time interval (t, t+ ∆t] for any ∆t:

ûm(t+ ∆t) = exp

(
−εm2∆t

1 + ε2τm2

)
ûm(t).

Finally, we use the inverse FFT algorithm to obtain the cell averages of the solution

at the new time level, {uj(t+ ∆t)}, out of the set of its discrete Fourier coefficients

{ûm(t+ ∆t)}.

Remark 2.3.2 In this chapter, we restrict our consideration to periodic boundary

conditions only. If other boundary conditions are prescribed, the proposed method

still applies with the only exception that the FFT and inverse FFT algorithms are

to be replaced with the Fast Chebyshev Transform and inverse Fast Chebyshev

Transform in the solutions of both equations (2.30) and (2.28).

2.4 Numerical Results

In this section, we test the performance of the proposed fast explicit operator

splitting method on several 1-D and 2-D examples. In the 1-D examples, we

compare the results obtained by applying the second-order minmod-based

reconstruction and the fifth-order WENO5 approach on several different grids to

demonstrate that higher-order spatial reconstruction leads to much higher

resolution of computed solutions. We also compare the behavior of solutions of

equation (2.5) with different nonlinear fluxes (2.2) and (2.3). The obtained results

are consistent with the traveling wave results presented in the bifurcation diagrams

in Figure 2.1. In the 2-D examples, we only use a more computationally efficient

and accurate WENO5 reconstruction.

In all of the examples below, the periodic boundary conditions are imposed, the

diffusion coefficient is ε = 10−3, and the minmod parameter θ = 1.3 is chosen. More

30

precisely, the minmod derivative of a grid function {ψj} is

(ψx)j = minmod

(
θ
ψj+1 − ψj

∆x
,
ψj+1 − ψj−1

2∆x
, θ

ψj − ψj−1

∆x

)
,

where the minmod function is defined by

minmod(z1, z2, . . .) :=

min(z1, z2, . . .), if zi > 0 ∀i,

max(z1, z2, . . .), if zi < 0 ∀i,

0, otherwise.

2.4.1 Linear Accuracy Tests

In this section, we test the accuracy and convergence of the proposed 1-D and 2-D

methods by solving the MBL equations (2.5) and (2.18) with the linear fluxes, for

which the exact solutions can be easily obtained using the spectral method (to

compute the errors reported in Tables 2.1–2.3 below we used the truncated spectral

solutions with the number of modes equal to the number of grid cells used to

generate the corresponding numerical solutions).

We begin with the 1-D case and consider the following IVP:

ut + ux = εuxx + 5ε2uxxt, (x, t) ∈ (0, 2)× (0, 2],

u(x, 0) = sin(πx), x ∈ [0, 2].

In Tables 2.1 and 2.2, we show the errors and experimental convergence rates

achieved with the second-order minmod-based and fifth-order WENO5

reconstructions, respectively. The errors, measured in both the L1-, L2- and

L∞-norms, confirm the expected convergence rates. The second-order

minmod-based reconstruction leads to the second-order experimental convergence,

while the fifth-order WENO5 reconstruction increase the convergence rate to the

31

N L1-error rate L2-error rate L∞-error rate

64 1.4755E-02 - 1.3400E-02 - 2.4467E-02 -

128 2.6529E-03 2.4755 2.4454E-03 2.4541 5.9092E-03 2.0498

256 4.5606E-04 2.5403 3.7676E-04 2.6983 9.7694E-04 2.5966

512 1.0240E-04 2.1551 8.0050E-05 2.2347 1.1068E-04 3.1418

1024 2.5122E-05 2.0272 1.9691E-05 2.0233 1.9653E-05 2.4936

2048 6.2732E-06 2.0017 4.9248E-06 1.9994 4.9236E-06 1.9969

Table 2.1: The 1-D linear accuracy test using the minmod-based reconstruction.

N L1-error rate L2-error rate L∞-error rate

64 1.3145E-05 - 1.0293E-05 - 1.0782E-05 -

128 8.6308E-07 3.9289 6.7674E-07 3.9269 6.7037E-07 4.0076

256 8.3592E-08 3.3681 6.5634E-08 3.3661 6.4986E-08 3.3667

512 9.6942E-09 3.1082 7.6128E-09 3.1079 7.5732E-09 3.1012

1024 1.1924E-09 3.0233 9.3638E-10 3.0233 9.3454E-10 3.0186

2048 1.5306E-10 2.9617 1.2021E-10 2.9616 1.2057E-10 2.9544

Table 2.2: The 1-D linear accuracy test using the WENO5 reconstruction.

third one. We would also like to point out that the absolute size of the obtained

WENO5 errors is about 3–4 orders of magnitude smaller than the minmod ones.

We note that in the WENO5 case, the convergence rates are limited by the

accuracy of the third-order SSP-RK solver and the second-order Strang splitting

algorithm. The latter, however, does not affect the obtained rates even for large

number of grid cells (N) since the splitting errors are very small thanks to the

smallness of the diffusion coefficient ε (according to the error estimates obtained in

[20,22,51], the splitting error is expected to be proportional to ε3(∆t)2).

In the 2-D accuracy test, we consider the 2-D IVP,

ut + ux + uy = ε∆u+ 5ε2(∆u)t, (x, y) ∈ (0, 2)× (0, 2), t ∈ (0, 2],

u(x, y, 0) = sin(πx) + sin(πy), (x, y) ∈ (0, 2)× (0, 2),

which is numerically solved using the fast explicit operator splitting method

32

N L1-error rate L2-error rate L∞-error rate

64× 64 3.3396E-05 - 2.0586E-05 - 2.1565E-05 -

128× 128 2.1915E-06 3.9297 1.3535E-06 3.9269 1.3407E-06 4.0076

256× 256 2.1273E-07 3.3648 1.3127E-07 3.3661 1.2997E-07 3.3667

512× 512 2.4679E-08 3.1077 1.5226E-08 3.1079 1.5146E-08 3.1012

1024× 1024 3.0370E-09 3.0226 1.8736E-09 3.0226 1.8690E-09 3.0185

Table 2.3: The 2-D linear accuracy test using the WENO5 reconstruction.

utilizing the WENO5 reconstruction. As in the 1-D case, the expected experimental

third-order convergence rate is achieved, as one can see in Table 2.3.

2.4.2 Nonlinear Accuracy Test

In this section, we test the accuracy and convergence of the proposed 1-D methods

by solving the MBL equation (1.5) with the nonlinear flux.

Consider the following IVP:

ut + f(u)x = εuxx + 0.2ε2uxxt, (x, t) ∈ (0, 2)× (0, 0.125],

u(x, 0) = 0.45(sin(πx) + 1), x ∈ [0, 2].

where f is given by (2.2) with M = 2. In Tables 2.4 and 2.5, we show the errors and

experimental convergence rates achieved with the second-order minmod-based and

fifth-order WENO5 reconstructions, respectively. The corresponding reference

solutions are obtained by computing the numerical solutions on a very fine grid with

N = 16384, and the errors are measured in both the L1-, L2- and L∞-norms.

Compared with the results obtained with linear flux in Section 2.4.1, the

convergence rates here are lower due to the nonlinearity in the flux f and presence

of sharp gradient areas in the solution, see Figure 2.2. However, the fifth-order

WENO5 reconstruction still leads to slightly higher experimental convergence rates

and smaller errors than the second-order minmod-based reconstruction does.

33

N L1-error rate L2-error rate L∞-error rate

64 5.1709E-03 - 1.1041E-02 - 4.9341E-02 -

128 1.7538E-03 1.5600 5.1379E-03 1.1036 3.5078E-02 0.4922

256 5.3929E-04 1.7013 1.9756E-03 1.3789 1.8171E-02 0.9490

512 1.4631E-04 1.8821 6.1700E-04 1.6790 6.7943E-03 1.4192

1024 3.6482E-05 2.0038 1.6260E-04 1.9239 2.0300E-03 1.7429

2048 8.8589E-06 2.0420 3.9584E-05 2.0383 5.0771E-04 1.9994

Table 2.4: The nonlinear accuracy test using the minmod-based reconstruction.

N L1-error rate L2-error rate L∞-error rate

64 2.8837E-03 - 7.5782E-03 - 4.0485E-02 -

128 8.6877E-04 1.7309 3.1722E-03 1.2564 2.2508E-02 0.8469

256 2.0925E-04 2.0538 9.6753E-04 1.7131 8.8667E-03 1.3440

512 3.9587E-05 2.4021 1.9185E-04 2.3344 2.0925E-03 2.0832

1024 7.7174E-06 2.3588 3.1650E-05 2.5997 3.5922E-04 2.5422

2048 1.7354E-06 2.1529 6.5627E-06 2.2698 6.8772E-05 2.3850

Table 2.5: The nonlinear accuracy test using the WENO5 reconstruction.

0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

5−order, N=64

5−order, N=16384

0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

5−order, N=2048

5−order, N=16384

Figure 2.2: Nonlinear Accuracy Test: Solutions computed using the fifth-order WENO5 reconstructions
on three different grids at the final time T = 0.125.

2.4.3 High-Resolution via the WENO5 Reconstruction

In this section, we show that the use of the fifth-order WENO5 reconstruction leads

to much more accurate and efficient method compared with the one that utilizes the

second-order minmod-based reconstruction.

34

We consider the 1-D MBL equation (2.5),(2.2) with the initial condition

u(x, 0) =

uB, if x ∈ (0.75, 2.25),

0, otherwise

x ∈ [0, 3].

We set the parameter M in flux (2.2) to be M = 1/2 and compute the solution at

the final time T = 0.5 for three different sets of values of τ and uB that correspond

to three qualitatively different solutions.

Example 1: τ = 3.5, uB = 0.85 > ũ

The first pair (τ, uB) corresponds to Case (i) according to the bifurcation diagram

in Figure 2.1, see Section 2.2.3. One can prove that the right part of the exact

solution consists of a rarefaction wave for x ∈ [2.315, 2.711], which is connected to a

plateau of height ũ ≈ 0.698, which is then followed by a shock at x ≈ 2.893.

The solutions computed using both the second- and fifth-order reconstructions

are shown in Figure 2.3 (left). To check the accuracy of the obtained solutions, we

need to verify how accurate the predicted plateau height is. We therefore zoom in at

the plateau area and show the details of the computed solutions in Figure 2.3

(right). As one can see, the plateau height, computed using the WENO5

reconstruction is more accurate even than the plateau height computed using the

minmod-based reconstruction on a much finer grid.

Example 2: τ = 5, u˜ < uB = 0.66 < ũ

The second pair of (τ, uB) corresponds to Case (ii) according to the bifurcation

diagram in Figure 2.1, see Section 2.2.3. The exact solution is now completely

different from the one in Example 1: Its right part consists of a jump up (located at

x ≈ 2.597) to a plateau of height ũ ≈ 0.713 and a jump down (located at x ≈ 2.881)

35

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

2−order, N=4096
5−order, N=4096

2.6 2.65 2.7 2.75 2.8 2.85 2.9
0.675

0.68

0.685

0.69

0.695

0.7

0.705

0.71

0.715

2−order, N=4096
2−order, N=8192
2−order, N=16384
5−order, N=4096

Figure 2.3: Example 1: Solutions computed using the second-order minmod-based and fifth-order
WENO5 reconstructions (left); zoom in at the plateau area (right).

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

2−order, N=4096
5−order, N=4096

2.6 2.7 2.8 2.9
0.65

0.66

0.67

0.68

0.69

0.7

0.71

0.72

2−order, N=4096
2−order, N=8192
2−order, N=16384
5−order, N=4096

Figure 2.4: Example 2: Solutions computed using the second-order minmod-based and fifth-order
WENO5 reconstructions (left); zoom in at the plateau area (right).

to 0. This is a nonclassical (nonmonotone) solution, which is hard to capture since

numerical diffusion would typically reduce the height of the newly created plateau.

Once again, the use of the WENO5 reconstruction leads to a much more accurate

computed solution, see Figure 2.4.

Example 3: τ = 5, u˜ < uB = 0.52 < ũ

In the third example, we take another pair of (τ, uB), which still corresponds to

Case (ii) according to the bifurcation diagram in Figure 2.1, but with a smaller

value of uB, which makes the solution nature to be slightly different. Namely, the

connection between the uB state and the plateau (which still has the same height as

in Example 2) is nonmonotone since the exact solution now develops an oscillatory

36

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

2−order, N=4096
5−order, N=4096

2.75 2.8 2.85 2.9

0.5

0.55

0.6

0.65

0.7

2−order, N=4096
2−order, N=8192
2−order, N=16384
5−order, N=4096

Figure 2.5: Example 3: Solutions computed using the second-order minmod-based and fifth-order
WENO5 reconstructions (left); zoom in at the plateau area (right).

part around x = 2.8. As in Examples 1 and 2, one can see that the results obtained

with the help of the WENO5 reconstruction are more accurate than the minmod

results, see Figure 2.5.

Computational Cost

To perform a fair comparison between the two versions of the proposed fast explicit

operator splitting method, we compare their CPU times, which are recorded in

Table 2.6. As one can see, for a fixed grid, the use of the WENO5 reconstruction

increases the computational cost by about 35%. However, it is clear that to achieve

the same quality of resolution with the minmod-based reconstruction, one needs to

use a substantially finer mesh, which makes the WENO5-based method to be not

only more accurate, but also more efficient.

Example 1 Example 2 Example 3

N minmod WENO5 minmod WENO5 minmod WENO5

1024 1.3572 1.9812 1.3884 2.0124 1.3728 2.0280

2048 5.8656 8.4085 6.3492 8.2525 5.8500 8.4865

4096 25.8494 36.2234 25.8962 35.7398 25.6778 36.0674

8192 112.6483 151.3210 111.6499 151.2274 108.9511 151.9762

16384 476.3802 617.8264 474.6018 630.4156 470.7018 627.5422

Table 2.6: Examples 1–3: Comparison of the CPU times.

37

(0.2, 0.85) (0.65, 0.85) (3.5, 0.85)

(0.2, 0.68) (0.65, 0.68) (3.5, 0.68)

(0.2, 0.55) (0.65, 0.55) (3.5, 0.55)

Table 2.7: The values of (τ, uB) pairs used in the nine experiments reported in Figure 2.7.

2.4.4 Numerical Study of the Gravitational Effects

In this section, we study the gravitational effects by comparing the numerical

solutions of the MBL equation (2.5) subject to the following initial data:

u(x, 0) =

uB, if x ∈ (4, 10),

0, otherwise

x ∈ [0, 13], (2.33)

but with two different fluxes, F = f and F = g, given by (2.2) and (2.3),

respectively (recall that the g flux is obtained from the f flux when the gravity is

taken into account). We take the flux parameters M = 1/2 and C = 2, and test the

behavior of the solutions for nine representative pairs (τ, uB) given in Table 2.7 and

also marked by “×” signs in Figure 2.6. The solutions obtained by the fast explicit

operator splitting method using the fifth-order WENO5 reconstruction are shown in

Figure 2.7. In all of the nine cases, the solutions behave exactly the way predicted

by the bifurcation diagram and the computed plateau values are in good agreement

with the analytical ones.

2.4.5 2-D Examples

In this section, we test the performance of the proposed fast explicit operator

splitting method on two 2-D examples. Our goal is to clearly demonstrate the

difference in the solutions of the BL and MBL equations. To achieve high

resolution, we use the fifth-order WENO5 reconstruction.

38

0 0.5 1 1.5 2 2.5 3 3.5 4

0.5

0.6

0.7

0.8

0.9

1

u B

τ

bifurcation diagram

τ*
g
→ ←τ*

f

Figure 2.6: The zoom-in view of the bifurcation diagram given in Figure 2.1 along with the parameter
values (marked by “×” signs) chosen in the nine experiments reported in Figure 2.7.

Example 4: Rotational BL and MBL Equations

We first consider the 2-D rotational BL,

ut +∇ · (V f(u)) = 0, (2.34)

and MBL equations:

ut +∇ · (V f(u)) = ε∆u+ ε2τ∆ut, (2.35)

where f is given by (2.2), M = 2, τ = 5 and V (x, z) = (z,−x)T . We select the

computational domain to be [−2, 2]× [−2, 2] and prescribe the following initial

condition:

u(x, z, 0) =

√

2

3
, if x2 + z2 ≤ 1, x > 0, z > 0,

0, otherwise.

39

4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Figure 2.7: Solutions of the MBL equation (2.5) with the f flux (2.2) (filled circles) and g flux (2.3)
(empty circles) computed at time T = 1.2 using N = 16384. For each of the nine plots, the initial data
(2.33) corresponds to the nine (τ, uB) pairs given in Table 2.7 and also marked in Figure 2.6.

The solutions of the BL equation (2.34) and MBL equation (2.35) computed at

time T = 1.5 using a uniform 512× 512 grid are shown in Figures 2.8 and 2.9,

respectively. As one can see, the solution of the MBL equation develops a plateau at

the rotational shock front, as one can expect based on the traveling wave analysis

described in Section 2.2.3.

Example 5: Two-Dimensional BL and MBL Equations with Gravitation

In the final example, we solve the following 2-D BL equation (2.19) and the MBL

equation (2.18) with the fluxes F (u) = f(u) and G(u) = g(u) given by (2.2) and

(2.3), respectively, with M = 1/2, C = 2 and τ = 2.5. We study two different initial

40

Figure 2.8: Example 4: Solution of the BL equation: top (left) and 3-D (right) views.

Figure 2.9: Example 4: Solution of the MBL equation: top (left) and 3-D (right) views.

conditions: a smooth 2-D Gaussian cut off by a plateau at the level u = 0.85,

u(x, z, 0) = 5e−20(x2+z2), (2.36)

considered on the square computational domain [−1.25, 1.25]× [−1.25, 1.25], and a

nonsmooth

u(x, z, 0) =

0.85, if 0.75 ≤ |x| ≤ 2.25, 0.75 ≤ |z| ≤ 2.25,

0, otherwise,

(2.37)

considered on the square computational domain [0, 3]× [0, 3]. Both solutions are

computed on a uniform 1024× 1024 grid at time T = 0.48.

41

Figure 2.10: Example 5, initial condition (2.36): Solution of the BL equation: top (left) and 3-D (right)
views.

Figure 2.11: Example 5, initial condition (2.36): Solution of the MBL equation: top (left) and 3-D
(right) views.

Figure 2.12: Example 5, initial condition (2.37): Solution of the BL equation: top (left) and 3-D (right)
views.

Figures 2.10 and 2.11 show the results for the IVPs (2.19), (2.2), (2.3), (2.36)

and (2.18), (2.2), (2.3), (2.36), respectively. Again, as one can expect, the solution

42

Figure 2.13: Example 5, initial condition (2.37): Solution of the MBL equation: top (left) and 3-D
(right) views.

of the MBL equation (2.18) generates a clear plateau across the shock front in the

z-direction, which is consistent with the traveling wave study presented in Section

2.2.3, according to which the parameter pair (τ, uB) = (2.5, 0.85) falls into Case (i)

for the flux f and into Case (ii) for the flux g.

Finally, if we use the initial condition (2.37), the results obtained for the BL

equation (2.19), (2.2), (2.3) and MBL equation (2.18), (2.2), (2.3) are shown in

Figures 2.12 and 2.13, respectively. Similarly to the previous case of the initial

condition (2.36), the new plateau can be found near the shock front in the

z-direction. However, because of the rarefaction wave created by the flux f in the

x-direction, this plateau gets deformed at its upper-right corner.

43

Chapter 3

Fast and Stable Explicit Operator

Splitting Methods for Phase-Field

Models

Numerical simulations of phase-field models require long time computations and

therefore it is necessary to develop efficient and highly accurate numerical methods.

In this chapter, we propose fast and stable explicit operator splitting methods for

both one- and two-dimensional nonlinear diffusion equations for thin film epitaxy

with slope selection and the Cahn-Hilliard equation. The equations are split into

nonlinear and linear parts. The nonlinear part is solved using a method of lines

together with an efficient large stability domain explicit ODE solver. The linear part

is solved by a pseudo-spectral method, which is based on the exact solution and thus

has no stability restriction on the time-step size. We demonstrate the performance

of the proposed methods on a number of one- and two-dimensional numerical

examples, where different stages of coarsening such as the initial preparation,

alternating rapid structural transition and slow motion can be clearly observed.

44

3.1 Introduction

Phase-field models have been recently introduced to describe interfacial phenomena.

They were originally derived for the microstructure evolution and phase transition,

but have been recently extended to many other physical phenomena, such as

solid-solid transitions, growth of cancerous tumors, phase separation of block

copolymers, dewetting and rupture of thin liquid films and infiltration of water into

porous medium.

Two of these phase-field models have attracted much attention: the molecular

beam epitaxy (MBE) equation with slope selection

ut = −δ∆2u+∇ · f(∇u), (x, y) ∈ Ω ⊂ R2, t ∈ (0, T], (3.1)

and the Cahn-Hilliard (CH) equation

ut = −δ∆2u+ ∆f(u), (x, y) ∈ Ω ⊂ R2, t ∈ (0, T]. (3.2)

In this chapter, we consider

f(ϕ) = ϕ|ϕ|2 − ϕ,

for which the two phase-field models (3.1) and (3.2) become

ut = −δ∆2u+∇ · (|∇u|2∇u−∇u), (x, y) ∈ Ω ⊂ R2, t ∈ (0, T], (3.3)

and

ut = −δ∆2u+ ∆(u3 − u), (x, y) ∈ Ω ⊂ R2, t ∈ (0, T]. (3.4)

In (3.3), u is a scaled height function of epitaxial growth of thin films in a

co-moving frame and the parameter δ is a positive surface diffusion constant. In

(3.4), u represents the concentration of one of the two metallic components of the

45

alloy, and the positive parameter δ represents the interfacial width, which is small

compared to the characteristic length of the laboratory scale. An important feature

of these two equations is that they can be viewed as the gradient flow of the

following energy functionals:

E(u) =

∫
Ω

[
δ

2
|∆u|2 +

1

4
(|∇u|2 − 1)2

]
dxdy (3.5)

for the MBE equation and

E(u) =

∫
Ω

[
δ

2
|∇u|2 +

1

4
(u2 − 1)2

]
dxdy (3.6)

for the CH one. As it has been shown in [42,43], both energy functionals decay in

time:

E(u(t)) ≤ E(u(s)), ∀t ≥ s.

Development of highly accurate and efficient numerical methods for (3.3) and

(3.4) is a challenging task. Since explicit schemes usually suffer from severe stability

restrictions caused by the presence of high-order derivative terms and do not obey

the energy decay property, semi-implicit schemes are widely used. In [65], a

combined spectral and large time-stepping method was studied for the MBE

equation, in which an extra term was added to substantially improve the stability

condition. The same method was applied to the CH equation in [66]. However, this

artificial stabilization term depends on the unknown numerical solutions and if it is

taken improperly, the resulting numerical scheme would be unstable. In [67],

unconditionally energy stable finite-difference schemes were introduced and an

adaptive time-stepping strategy was proposed to select time-steps adaptively based

on the time variation of the energy. This technique was also successfully applied in

the simulations of the CH equation in [68]. In [69], a high-order and energy stable

46

scheme was developed to simulate some phase-field models by combining the

semi-implicit spectral deferred correction method and the energy stable convex

splitting technique. In [70], a set of unconditionally stable, unconditionally uniquely

solvable and second-order schemes for general gradient flows of Ehrlich-Schwoebel

energy type with a specific application to the MBE equation was presented. In

addition, a variety of finite-element based unconditionally energy-stable schemes for

the CH equation were proposed in [71,72], including first- and second-order in time

linear schemes as well as an adaptive time-stepping algorithm. A detailed review of

the recent updates on numerical methods for the CH equation and its applicability

to related energy-based models, including phase-field models, can be found in [73].

In this chapter, we develop accurate, efficient and robust explicit methods for

both (3.3) and (3.4) subject to periodic boundary conditions. Our methods, which

are described in detail in Section 3.2 and Section 3.3, are based on the large

stability domain explicit Runge-Kutta methods [35,37,74,75] and the fast explicit

operator splitting method proposed in [18–21] (see also [22]) in the context of

convection-diffusion equations.

Following the approach in [18–21], we split equation (3.3) into the nonlinear,

ut = ∇ · (|∇u|2∇u), (3.7)

and linear,

ut = −∆u− δ∆2u, (3.8)

parts. We denote by SN the exact solution operator associated with (3.7) and by SL

the exact solution operator associated with (3.8). Notice that the corresponding

energy functionals,

EN (u) =
1

4

∫
Ω

|∇u|4 dxdy (3.9)

47

and

EL(u) =

∫
Ω

(
δ

2
|∆u|2 − 1

2
|∇u|2 +

1

4

)
dxdy (3.10)

decay. Then, introducing a (small) splitting step ∆t, the solution of the original

equation (3.3) (which is assumed to be available at time t) is evolved using the

Strang splitting method [5–7], one step of which can be written as

u(x, y, t+ ∆t) = SL(∆t/2)SN (∆t)SL(∆t/2)u(x, y, t).

A similar splitting approach is applied to equation (3.4), for which the linear part is

still (3.8) and the nonlinear one is

ut = ∆(u3). (3.11)

As in the case of the MBE equation, the corresponding energy functionals,

EN (u) =
1

4

∫
Ω

u4 dxdy (3.12)

and

EL(u) =

∫
Ω

(
δ

2
|∇u|2 − 1

2
u2 +

1

4

)
dxdy (3.13)

decay. We stress that even though the linear parts of equations (3.3) and (3.4) are

the same, the functionals (3.10) and (3.13) are different since they are associated

with the corresponding parts of the energy functionals (3.5) and (3.6).

In order to implement the splitting method, the exact solution operators SN and

SL have to be replaced by their numerical approximations. Note that one of the

main advantages of the operator splitting technique is the fact that the nonlinear,

(3.7) and (3.11), and linear, (3.8), subproblems, which are of different nature, can

be solved numerically by different methods. First, using the method of lines, (3.7)

48

and (3.11) can be reduced to systems of ODEs, which can be efficiently and

accurately integrated by large stability domain explicit ODE solvers [35,37,74,75].

Second, since (3.8) is linear, one can solve it (practically) exactly using, for example,

the pseudo-spectral method. This way, no stability restrictions on solving (3.8) are

imposed. A detailed description of an efficient implementation of the proposed fast

and stable explicit operator splitting methods is given in Section 3.2 and Section 3.3.

The chapter is organized as follows. In Section 3.2, we build 2mth-order

semi-discrete finite-difference schemes for (3.7) and (3.11). The resulting stiff system

of ODE is then solved by an efficient large stability domain explicit ODE solver

[76,77]. In Section 3.3, we develop a pseudo-spectral method for the linear equation

(3.8). In Section 3.5, we demonstrate the performance of the proposed fast and

stable explicit operator splitting methods on a number of 1-D and 2-D numerical

examples, where different stages of coarsening such as the initial preparation,

alternating rapid structural transition and slow motion can be clearly observed.

3.2 Finite-Difference Methods for (3.7) and

(3.11)

In this section, we propose efficient explicit finite-difference methods for the

degenerate parabolic equations (3.7) and (3.11). These methods are based on the

semi-discretization of (3.7) and (3.11) followed by the use of an efficient and

accurate ODE solver. The ODE solver will be utilized to evolve the solutions of

(3.7) and (3.11) from time t to t+ ∆t. We note that in a general case the time-steps

of the ODE solver denoted by ∆tODE will be smaller than the splitting step ∆t so

that the approximation of SN (∆t) will typically require several ∆tODE steps.

49

3.2.1 Finite-Difference Schemes for ut = (u3
x)x

In this section, we design 2mth-order centered-difference schemes for the 1-D

version of (3.7):

ut = (u3
x)x, x ∈ [0, L], t ∈ (0, T]. (3.14)

We consider a uniform grid with nodes xj, such that xj+1 − xj = ∆x, ∀j, and

introduce the following 2mth-order discrete approximation of the ∂
∂x

operator:

(ψx)j :=
m∑

p=−m

αpψj+p = ψx(xj) +O((∆x)2m). (3.15)

For example, when m = 2, we obtain a fourth-order centered-difference

approximation by taking

α1 = −α−1 =
2

3∆x
, α2 = −α−2 = − 1

12∆x
.

Equipped with the above approximation of spacial derivatives, we discretize

equation (3.14) using the method of lines as follows:

duj
dt

(t) =
m∑

p=−m

αpHj+p(t) =: Fj(t), (3.16)

where uj(t) denotes the computed point value of the solution at (xj, t), and

Hj(t) := (ux)
3
j(t) with (ux)j(t) :=

m∑
p=−m

αpuj+p(t). (3.17)

Note that the above quantities depend on t, but for the sake of brevity we will

suppress this dependence from now on.

Remark 3.2.1 One can show that the coefficients {αp} satisfy the following

50

conditions:

α0 = 0 and αp + α−p = 0, p 6= 0. (3.18)

Theorem 3.2.1 The semi-discrete schemes (3.16), (3.17) satisfy the following

energy decay property:

d

dt
E∆
N ≤ 0,

where E∆
N is a 1-D discrete version of the energy functional (3.9):

E∆
N :=

1

4

∑
j

(ux)
4
j∆x.

Proof: Using (3.16)–(3.18) and the periodicity of computed solutions, one can

obtain the following energy estimate:

d

dt

(
1

4

∑
j

(ux)
4
j

)
=
∑
j

(ux)
3
j

d

dt
[(ux)j]

(3.17)
=
∑
j

Hj
d

dt

[
m∑

p=−m

αpuj+p

]
(3.16)
=
∑
j

Hj

m∑
p=−m

αpFj+p =
m∑

p=−m

αp
∑
j

HjFj+p =
m∑

p=−m

αp
∑
j

Hj−pFj

=
∑
j

Fj

m∑
p=−m

αpHj−p =
∑
j

Fj

m∑
p=−m

α−pHj+p

(3.18)
=
∑
j

Fj

m∑
p=−m

(−αp)Hj+p
(3.16)
= −

∑
j

F 2
j ≤ 0.

�

3.2.2 Finite-Difference Schemes for ut = ∇ · [|∇u|2∇u]

We now turn to the 2-D equation (3.7). We consider a uniform grid with nodes

(xj, yk), such that xj+1 − xj = ∆x,∀j, yk+1 − yk = ∆y,∀k, and introduce the

51

following 2mth-order discrete approximation of the ∂
∂x

and ∂
∂y

operators:

(ψx)j,k :=
m∑

p=−m

αpψj+p,k = ψx(xj, yk) +O((∆x)2m),

(ψy)j,k :=
m∑

p=−m

βpψj,k+p = ψy(xj, yk) +O((∆y)2m).

(3.19)

For example, when m = 2, we obtain a fourth-order centered-difference

approximation by taking

α1 = −α−1 =
2

3∆x
, α2 = −α−2 = − 1

12∆x
,

β1 = −β−1 =
2

3∆y
, β2 = −β−2 = − 1

12∆y
.

Equipped with the above approximation of spacial derivatives, 2mth-order

semi-discrete finite-difference schemes for (3.7) read:

duj,k
dt

=
m∑

p=−m

αpH
x
j+p,k +

m∑
p=−m

βpH
y
j,k+p =: Fj,k, (3.20)

where

Hx
j,k := (ux)

3
j,k + (uy)

2
j,k(ux)j,k and Hy

j,k := (uy)
3
j,k + (ux)

2
j,k(uy)j,k (3.21)

with

(ux)j,k :=
m∑

p=−m

αpuj+p,k and (uy)j,k :=
m∑

p=−m

βpuj,k+p. (3.22)

Remark 3.2.2 One can show that the coefficients {αp} and {βp} satisfy the

following conditions:

α0 = 0, β0 = 0 and αp + α−p = 0, βp + β−p = 0, p 6= 0. (3.23)

52

Theorem 3.2.2 The semi-discrete schemes (3.20)–(3.22) satisfy the following

energy decay property:

d

dt
E∆
N ≤ 0,

where E∆
N is a 2-D discrete version of the energy functional (3.9):

E∆
N :=

1

4

∑
j

|∇huj,k|4∆x∆y

with ∇huj,k := ((ux)j,k, (uy)j,k)
T .

Proof: Using (3.20)–(3.23) and the periodicity of computed solutions, one can

obtain the following energy estimate:

d

dt

(
1

4

∑
j,k

|∇huj,k|4
)

(3.21)
=
∑
j,k

Hx
j,k

d

dt
[(ux)j,k] +

∑
j,k

Hy
j,k

d

dt
[(uy)j,k]

(3.22)
=
∑
j,k

Hx
j,k

d

dt

[
m∑

p=−m

αpuj+p,k

]
+
∑
j,k

Hy
j,k

d

dt

[
m∑

p=−m

βpuj,k+p

]
(3.20)
=
∑
j,k

Hx
j,k

m∑
p=−m

αpFj+p,k +
∑
j,k

Hy
j,k

m∑
p=−m

βpFj,k+p

(3.23)
= −

∑
j,k

Fj,k

m∑
p=−m

αpH
x
j+p,k −

∑
j,k

Fj,k

m∑
p=−m

βpH
y
j,k+p

(3.20)
= −

∑
j,k

F 2
j,k ≤ 0.

�

3.2.3 Finite-Difference Schemes for ut = ∆(u3)

We now design semi-discrete finite-difference schemes for the 2-D CH equation

(3.11). We use the same grids and the same 2mth-order discrete approximation of

the ∂
∂x

and ∂
∂y

operators as in Section 3.2.2. Then, 2mth-order semi-discrete

53

finite-difference schemes for (3.11) read:

duj,k
dt

=
m∑

p=−m

αpH
x
j+p,k +

m∑
p=−m

βpH
y
j,k+p =: Fj,k, (3.24)

where

Hx
j,k :=

m∑
p=−m

αpu
3
j+p,k and Hy

j,k :=
m∑

p=−m

βpu
3
j,k+p. (3.25)

Theorem 3.2.3 The semi-discrete schemes (3.24), (3.25) satisfy the following

energy decay property:

d

dt
E∆
N ≤ 0,

where E∆
N is a 2-D discrete version of the energy functional (3.12):

E∆
N :=

1

4

∑
j

u4
j,k∆x∆y.

Proof: Using (3.23)–(3.25) and the periodicity of computed solutions, one can

obtain the following energy estimate:

d

dt

(
1

4

∑
j,k

u4
j,k

)
=
∑
j,k

u3
j,k

duj,k
dt

(3.24)
=
∑
j,k

m∑
p=−m

αpH
x
j+p,ku

3
j,k +

∑
j,k

m∑
p=−m

βpH
y
j,k+pu

3
j,k

(3.23)
= −

∑
j,k

Hx
j,k

m∑
p=−m

αpu
3
j+p,k −

∑
j,k

Hy
j,k+p

m∑
p=−m

βpu
3
j,k+p

(3.25)
= −

∑
j,k

[
(Hx

j,k)
2 + (Hy

j,k)
2
]
≤ 0.

�

54

3.2.4 Large Stability Domain Explicit ODE Solver

The ODE systems (3.16), (3.20) and (3.24) have to be solved numerically. Recall

that explicit ODE solvers typically require time-steps to be ∆tODE ∼ (∆x)2, while

implicit ODE solvers can be made unconditionally stable. However, the accuracy

requirements would limit time-step size and since a large nonlinear algebraic system

of equations has to be solved at each time-step, implicit methods may not be

efficient. Here, we apply the explicit third-order large stability domain Runge-Kutta

method, developed in [37,77]. This method belongs to a class of

Runge-Kutta-Chebyshev methods (see, e.g., [75, 78–81]), which allow one to use

much larger time-steps compared with the standard explicit Runge-Kutta methods.

In practice, when the problem is not too stiff as in the case of ODEs arising in

finite-difference approximation of parabolic PDEs, these methods preserve all the

advantages of explicit methods and are typically more efficient than implicit

methods (see [35,37,74,78,81] for details). We have implemented the code

DUMKA3 [77], which incorporates the embedded formulas that permit an efficient

stepsize control. The efficiency of DUMKA3 is further improved when the user

provides an upper bound on the time-step stability restriction for the forward Euler

method. We therefore establish such bounds in the following three theorems.

Theorem 3.2.4 Assume that the system of ODEs (3.16), (3.17) is numerically

integrated by the forward Euler method from time t to t+ ∆tFE and that the

following CFL condition holds:

∆tFE ≤
1

am
· 1

max
j

(ux)2
j

, a :=
m∑

p=−m

α2
p, (3.26)

where αp are the coefficients in (3.15) and (ux)j are given by (3.17). Then

‖u(t+ ∆tFE)‖L2 ≤ ‖u(t)‖L2 , (3.27)

55

where ‖u(t)‖L2 :=
√∑

j u
2
j(t)∆x.

Theorem 3.2.5 Assume that the system of ODEs (3.20)–(3.22) is numerically

integrated by the forward Euler method from time t to t+ ∆tFE and that the

following CFL condition holds:

∆tFE ≤
1

4m ·max(a, b)
· 1

max
j,k
{(ux)2

j,k, (uy)
2
j,k}

, a :=
m∑

p=−m

α2
p, b :=

m∑
p=−m

β2
p , (3.28)

where αp and βp are the coefficients in (3.19) and (ux)j,k and (uy)j,k are given by

(3.22). Then

‖u(t+ ∆tFE)‖L2 ≤ ‖u(t)‖L2 , (3.29)

where ‖u(t)‖L2 :=
√∑

j,k u
2
j,k(t)∆x∆y.

Theorem 3.2.6 Assume that the system of ODEs (3.24), (3.25) is numerically

integrated by the forward Euler method from time t to t+ ∆tFE and that the

following CFL condition holds:

∆tFE ≤
1

6m ·max(a, b)
· 1

max
j,k

u2
j,k

. (3.30)

Then,

‖u(t+ ∆tFE)‖L2 ≤ ‖u(t)‖L2 , (3.31)

with the same a and b as in Theorem 3.2.5.

Proofs of Theorem 3.2.4, Theorem 3.2.5 and Theorem 3.2.6 are provided in

Appendix A.

Remark 3.2.3 We would like to emphasize that the code DUMKA3 automatically

selects time-steps so that in average the selected time-steps ∆tODE are much larger

than ∆tFE.

56

3.3 Pseudo-Spectral Methods for (3.8)

In this section, we describe the (exact) pseudo-spectral solver for equation (3.8) and

its 1-D version.

3.3.1 One-Dimensional Pseudo-Spectral Method

We consider the 1-D equation,

ut = −uxx − δuxxxx, x ∈ [0, L], t ∈ (0, T], (3.32)

subject to the L-periodic boundary conditions.

We first use the FFT algorithm to compute the discrete Fourier coefficients

{ûm(t)} from the available point values {uj(t)}. This gives us the following spectral

approximation of u on [0, L]:

u(x, t) ≈
∑
m

ûm(t)ei
2πmx
L . (3.33)

We then substitute (3.33) into (3.32) and obtain very simple linear ODEs for the

discrete Fourier coefficients of u,

d

dt
ûm(t) = (s− δs2)ûm(t), s =

(2πm

L

)2

,

which can be solved exactly:

ûm(t+ ∆t) = e(s−δs2)∆t ûm(t).

Finally, we use the inverse FFT algorithm to obtain the point values of the solution

at the new time level, {uj(t+ ∆t)}, out of the set of the discrete Fourier coefficients

{ûm(t+ ∆t)}.

57

3.3.2 Two-Dimensional Pseudo-Spectral Method

We now solve the 2-D equation (3.8),

ut = −(uxx + uyy)− δ(uxxxx + 2uxxyy + uyyyy),

on a rectangular domain Ω = [0, Lx]× [0, Ly] with the Lx- and Ly-periodic boundary

conditions in the x- and y-directions, respectively.

Similar to the 1-D case, we apply the FFT algorithm and obtain very simple

linear ODEs for the discrete Fourier coefficients of u,

d

dt
ûm,`(t) = (s− δs2)ûm,`(t), s =

(2πm

Lx

)2

+
(2π`

Ly

)2

. (3.34)

The exact solution of (3.34) is

ûm,`(t+ ∆t) = e(s−δs2)∆t ûm,`(t).

Finally, we apply the inverse FFT algorithm to obtain the point values of the

solution at the new time level, {uj,k(t+ ∆t)}, out of the set of the discrete Fourier

coefficients {ûm,`(t+ ∆t)}.

Remark 3.3.1 Using Parseval’s theorem and the fact that e(s−δs2)∆t ≤ e
∆t
4δ , we

obtain the following result on stability of the pseudo-spectral methods:

‖u(t+ ∆t)‖L2 ≤ e
∆t
4δ ‖u(t)‖L2 ,

which is true in both the 1-D and 2-D cases.

58

3.4 Adaptive Splitting Time-Stepping Strategy

For practical applications, the efficiency of splitting methods hinges on its ability to

use (relatively) large time-steps (see, e.g., [18–22]). Our numerical experiments

indicate that taking ∆t = δ/100 for the MBE equations and ∆t = δ/10 for the CH

equation leads to accurate results. However, one expects such a small ∆t is only

required when the phase transition occurs and the solution changes quite rapidly.

At other times and especially the solution is close to its steady state, it might be

safe to use much larger ∆t. We therefore explore an adaptive splitting time-stepping

strategy: We would like to use small ∆t only whenever necessary.

To design an adaptive approach, we need to measure the solution variation. This

can be done using either the energy or solution roughness at time t, which is defined

by

w(t) =

√√√√ 1

|Ω|

∫
Ω

[u(x, y, t)− ū(t)]2 dxdy, (3.35)

where

ū(t) =
1

|Ω|

∫
Ω

u(x, y, t) dxdy (3.36)

is the mean height at time t.

We adjust the size of splitting steps using the following roughness-dependent

monitor function introduced in [67]

∆t = max

(
∆tmin,

∆tmax√
1 + α|w′(t)|2

)
, α = Const. (3.37)

Here, ∆tmin is the smallest splitting step, which is taken to be either ∆tmin = δ/100

(for the MBE equations) or ∆tmin = δ/10 (for the CH equation), ∆tmax is the

largest allowed splitting step, and α is a positive adaption constant.

Notice that large |w′(t)| will lead to small splitting step, which corresponds to

59

Example Number of grid points Final time Splitting step CPU time

1 256 240
constant 3.2805

adaptive 0.9659

2 256× 256 30
constant 4601.9

adaptive 838.9

3 512× 512 80000
constant 223370

adaptive 38775

4 128× 128 20
constant 504.09

adaptive 125.86

Table 3.1: CPU times for Examples 1–4 in Section 3.5.

the case of rapid change of roughness or quick motion of the structural transition

from one stage to the next one. Similarly, small |w′(t)| yields large splitting step,

which corresponds to the slow MBE growth or slow phase interface motion.

Remark 3.4.1 A similar adaptive strategy can be designed by replacing w(t) with

E(t). However, our numerical experiments indicate the roughness-based strategy is

more robust than the energy-based one.

Our numerical experiments reported in Section 3.5 suggest that the adaptive

splitting time-stepping strategy can lead to a substantial reduction of the CPU time

without significantly affecting the accuracy of the computed solution. The data on

the CPU time reduction achieved in different numerical examples are presented in

Table 3.1: In average, the adaptive method is about 3–6 times more efficient.

3.5 Numerical Examples

In this section, we illustrate the performance of our fast and stable explicit operator

splitting methods on several 1-D and 2-D examples. When solving equation (3.7)

and (3.11), we use the fourth-order finite-difference schemes developed in Section 2

(in Example 5, we also use the sixth-order scheme). Both constant and adaptive

60

splitting steps are employed to obtain numerical solutions. The adaptive splitting

step is determined by (3.37) with the values ∆tmin, ∆tmax and α being specified in

each example.

To verify the rates of convergence of the proposed methods, we measure the

difference between the solutions computed at the same time level on two consecutive

grids using the L1- and L∞-errors, which are defined as follows:

||uN,∆t1 − uN/2,∆t2||1 :=
LxLy
N2

N∑
j=1

N∑
k=1

|uN,∆t1j,k − uN/2,∆t2j,k |,

and

||uN,∆t1 − uN/2,∆t2||∞ := max
1≤j,k≤N

|uN,∆t1j,k − uN/2,∆t2j,k |,

where uN,∆t := {uNj,k} is a numerical solution obtained with a uniform N ×N grid

and a constant splitting step ∆t at some time level. Then, to measure the

experimental convergence rates, we use the ratio of errors:

r = log2

(
||uN/2,∆t2 − uN/4,∆t3 ||
||uN,∆t1 − uN/2,∆t2||

)
,

where we either take ∆t1 = ∆t, ∆t2 = 2∆t and ∆t3 = 4∆t or fix the splitting step

and set ∆t1 = ∆t2 = ∆t3 = ∆t.

In the 1-D case, the rates are computed similarly.

Example 1: One-Dimensional Morphological Instability

We first consider the 1-D MBE equation

ut = (u3
x)x − uxx − uxxxx,

61

subject to the initial condition

u(x, 0) = 0.1
(

sin
πx

2
+ sin

2πx

3
+ sin πx

)
, x ∈ [0, 12].

This example was studied in [43] to observe the morphological instability due to the

nonlinear interaction.

We compute the solution until the final time t = 240 with a constant splitting

step ∆t = 10−1 on the uniform grid with N = 256. Figure 3.1 shows a sequence of

snapshots of the surface height at different times. As one can observe, the initial

oscillation is damped by t = 1. After a relatively long period of “buffering” time, a

new larger scale structure emerges, then it increases and finally the steady state is

reached by t = 240.

Compared to the results reported in [43], our steady state is in a good agreement

with the one obtained there, while the “buffering” time evolution is very different.

We therefore reduce the splitting step by a factor of 10 and repeat the computation

with ∆t = 10−2. The obtained solution, plotted in Figure 3.2 (solid line), now

matches the results in [43]: The structure emerges earlier and the steady state is

reached by t = 60.

The time evolution process can be monitored by plotting the energy (3.5) and

roughness (3.35), see Figure 3.3. One can observe that initially both energy and

roughness decay rapidly. However, after a relatively long period of time, roughness

starts to grow, which is exactly the morphological instability in the

rough-smooth-rough pattern. Notice that the flat tail in Figure 3.3(b) and (d)

indicates that the steady state is reached much later when ∆t = 10−1 is used. To

improve the efficiency of the proposed fast and stable explicit operator splitting

methods, we implement the adaptive strategy described in Section 4. Here, we use

∆tmin = 10−2, ∆tmax = 10−1 and α = 103. The obtained solution is shown in Figure

62

0 2 4 6 8 10 12
−0.4

−0.2

0

0.2

0.4

t = 0

0 2 4 6 8 10 12
−0.4

−0.2

0

0.2

0.4

t = 0.5

0 2 4 6 8 10 12
−0.4

−0.2

0

0.2

0.4

t = 1

0 2 4 6 8 10 12
−0.4

−0.2

0

0.2

0.4

t = 15

0 2 4 6 8 10 12
−0.4

−0.2

0

0.2

0.4

t = 20

0 2 4 6 8 10 12
−0.4

−0.2

0

0.2

0.4

t = 30

0 2 4 6 8 10 12

−2

−1

0

1

2

t = 60

0 2 4 6 8 10 12

−2

−1

0

1

2

t = 240

Figure 3.1: Example 1: u computed with ∆t = 10−1.

3.2 (dashed line), and the corresponding energy and roughness are plotted in Figure

3.3 (dashed line). As one can see, the adaptive solution practically coincides with

the solution computed with ∆t = 10−2. It is instructive to check what splitting

63

0 2 4 6 8 10 12
−0.4

−0.2

0

0.2

0.4
t = 15

∆t=10
−2

adaptive

0 2 4 6 8 10 12
−0.4

−0.2

0

0.2

0.4
t = 30

∆t=10
−2

adaptive

0 2 4 6 8 10 12
−0.4

−0.2

0

0.2

0.4
t = 40

∆t=10
−2

adaptive

0 2 4 6 8 10 12
−2

−1

0

1

2

t = 60

∆t=10
−2

adaptive

Figure 3.2: Example 1: u computed with ∆t = 10−2 (solid line) and adaptive splitting time-stepping
with ∆tmin = 10−2, ∆tmax = 10−1 and α = 103 (dashed line).

steps are used by the adaptive algorithm. To this end, we plot the splitting steps as

a function of time in Figure 3.4. As one can see, the splitting steps are smaller than

10−1 only initially and then at the intermediate times. We also compare the CPU

times of the adaptive and constant (with ∆t = 10−2) splitting step computations.

The results, shown in the first row of Table 3.1, indicate that the CPU time for the

adaptive method is about four times smaller than the one for the constant splitting

step.

Finally, we test the accuracy of the proposed fast and stable explicit splitting

methods. To this end, we perform the mesh-refinement study and measure the L1-

and L∞-errors. The results reported in Table 3.2 indicate that the experimental

convergence rate is close to the expected second-order one. We next fix the splitting

step to be very small (∆t = 10−3) so that the splitting errors do not dominate and

perform another mesh-refinement study. The results reported in Table 3.3 show that

in this regime, the experimental convergence rate is four, which is the order of

64

0 0.2 0.4 0.6 0.8 1 1.2
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5
(a)

∆t=10
−1

∆t=10
−2

adaptive

0 20 40 60 80 100
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5
(b)

∆t=10
−1

∆t=10
−2

adaptive

0 5 10 15 20 25 30 35 40
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
(c)

∆t=10
−1

∆t=10
−2

adaptive

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(d)

∆t=10
−1

∆t=10
−2

adaptive

Figure 3.3: Example 1: (a) Energy evolution in a short time period; (b) Energy evolution in a long time
period; (c) Roughness development in a time period t ∈ [0, 40]; (d) Roughness development in a long
time period. ∆t = 10−1 (dashed dotted line), ∆t = 10−2 (solid line) and adaptive splitting time-stepping
with ∆tmin = 10−2, ∆tmax = 10−1 and α = 103 (dashed line).

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

∆t=10−2

adaptive

Figure 3.4: Example 1: Splitting step evolution. ∆t = 10−2 (solid line) and adaptive splitting time-
stepping with ∆tmin = 10−2, ∆tmax = 10−1 and α = 103 (dashed line).

finite-difference scheme from Section 3.2.1.

65

N ∆t ||uN,∆t − uN/2,2∆t||1 Rate ||uN,∆t − uN/2,2∆t||∞ Rate

128 2e-2 3.95e-03 – 7.58e-04 –

256 1e-2 1.07e-03 1.89 2.45e-04 1.63

512 5e-3 2.73e-04 1.97 7.17e-05 1.78

1024 2.5e-3 6.84e-05 1.99 1.93e-05 1.89

Table 3.2: Example 1: L1- and L∞-errors and experimental convergence rates at t = 240.

N ∆t ||uN,∆t − uN/2,∆t||1 Rate ||uN,∆t − uN/2,∆t||∞ Rate

128 1e-3 8.06e-05 – 2.25e-05 –

256 1e-3 5.18e-06 3.96 1.44e-06 3.96

512 1e-3 3.27e-07 3.99 9.10e-08 3.99

1024 1e-3 2.02e-08 4.02 5.62e-09 4.02

Table 3.3: Example 1: L1- and L∞-errors and experimental convergence rates obtained with the fixed
small splitting step ∆t = 10−3 at t = 240.

Example 2: Two-Dimensional Morphological Instability

Next, we consider the 2-D MBE equation (3.3) with δ = 0.1 subject to the following

initial condition:

u(x, y, 0) = 0.1(sin 3x sin 2y + sin 5x sin 5y), (x, y) ∈ [0, 2π]× [0, 2π].

This example was studied in [43,65] to observe the morphological instability due to

the nonlinear interaction.

We first compute the solution on a 256× 256 uniform grid with the constant

splitting step ∆t = 10−3. Figure 3.5 shows the height profiles at times

t = 0, 0.5, 2.5, 5.5, 8 and 30. The corresponding gradients |∇u| are plotted in Figure

3.6. In Figure 3.7, we demonstrate the experimental energy decay and roughness

development, which indicate that the solution reaches a steady state at around

t = 12. The obtained results are in good agreement with those reported in [43].

We then carry out the adaptive strategy to increase the efficiency of the

proposed methods. Here, we choose ∆tmin = 10−3, ∆tmax = 10−2 and α = 103. The

66

t = 0

0 2 4 6
0

1

2

3

4

5

6

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

t = 0.05

0 2 4 6
0

1

2

3

4

5

6

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

t = 2.5

0 2 4 6
0

1

2

3

4

5

6

−6

−4

−2

0

2

4

6
x 10

−4 t = 5.5

0 2 4 6
0

1

2

3

4

5

6

−0.2

−0.1

0

0.1

0.2

t = 8

0 2 4 6
0

1

2

3

4

5

6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

t = 30

0 2 4 6
0

1

2

3

4

5

6

−1

−0.5

0

0.5

1

Figure 3.5: Example 2: u computed with ∆t = 10−3.

corresponding energy and roughness curves in Figure 3.7 are practically

indistinguishable from those obtained using the small constant splitting step

∆t = 10−3. Splitting steps evolution, plotted in Figure 3.8, shows that ∆t ≈ ∆tmax

when the solution approaches its steady state. This leads to a substantial decrease

in CPU time, see the second row in Table 3.1.

Finally, we perform the mesh-refinement study and verify that the experimental

convergence rates for the proposed fast and stable explicit operator splitting

methods are close to the expected second-order one, see Table 3.4.

67

t = 0

0 2 4 6
0

1

2

3

4

5

6

0

0.1

0.2

0.3

0.4

0.5

0.6

t = 0.05

0 2 4 6
0

1

2

3

4

5

6

0.05

0.1

0.15

0.2

t = 2.5

0 2 4 6
0

1

2

3

4

5

6

1

2

3

4

5

6

7

x 10
−4 t = 5.5

0 2 4 6
0

1

2

3

4

5

6

0.05

0.1

0.15

0.2

0.25

0.3

0.35

t = 8

0 2 4 6
0

1

2

3

4

5

6

0.2

0.4

0.6

0.8

1

t = 30

0 2 4 6
0

1

2

3

4

5

6

0.2

0.4

0.6

0.8

1

Figure 3.6: Example 2: |∇u| computed with ∆t = 10−3.

N ∆t ||uN,∆t − uN/2,2∆t||1 Rate ||uN,∆t − uN/2,2∆t||∞ Rate

64 4e-3 3.36e-03 – 6.01e-04 –

128 2e-3 9.09e-04 1.88 1.55e-04 1.96

256 1e-3 2.48e-04 1.87 4.96e-05 1.64

512 5e-4 6.52e-05 1.93 1.55e-05 1.68

Table 3.4: Example 2: L1- and L∞-errors and experimental convergence rates at t = 30.

Example 3: Coarsening Dynamics

In this example, we study the 2-D MBE equation (3.3) with δ = 1 subject to initial

data, obtained by assigning a uniformly distributed random number in the range

68

0 0.01 0.02 0.03 0.04
10

11

12

13

14

15

16

17

18

19

20

(a)

∆t=10
−3

adaptive

0 5 10 15 20 25 30
4

6

8

10

12

14

16

18

20

(b)

∆t=10
−3

adaptive

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(c)

∆t=10
−3

adaptive

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6
(d)

∆t=10
−3

adaptive

Figure 3.7: Example 2: (a) Energy evolution in a short time period; (b) Energy evolution in a long time
period; (c) Roughness development in a short time period; (d) Roughness development in a long time
period. ∆t = 10−3 (solid line) and adaptive splitting time-stepping with ∆tmin = 10−3, ∆tmax = 10−2

and α = 103 (dashed line).

0 5 10 15 20 25 30
0

0.002

0.004

0.006

0.008

0.01

∆t=10−3

adaptive

Figure 3.8: Example 2: Splitting step evolution. ∆t = 10−3 (solid line) and adaptive splitting time-
stepping with ∆tmin = 10−3, ∆tmax = 10−2 and α = 103 (dashed line).

[−0.001, 0.001] to each grid point value of u(x, y, 0). We use a 512× 512 uniform

grid on the computational domain Ω = [0, 1000]× [0, 1000].

Figure 3.9 shows the contour lines of the free energy function

Ffree :=
1

4
(|∇u| − 1)2 +

δ

2
|∆u|2

69

Figure 3.9: Example 3: Contour plots of Ffree computed with ∆t = 10−1.

0 2 4 6 8

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3
(a)

∆t=10
−1

adaptive

0 2 4 6 8

x 10
4

0

3

6

9

12

15
(b)

∆t=10
−1

adaptive

0 0.5 1 1.5 2
0

2

4

6
(c)

∆t=10
−1

adaptive

Figure 3.10: Example 3: (a) Energy evolution; (b) Roughness development; (c) Splitting step evolution.
∆t = 10−1 (solid line) and adaptive splitting time-stepping with ∆tmin = 10−1, ∆tmax = 5 and α = 1
(dashed line).

at t = 40, 000 and 80, 000 computed using the constant splitting step ∆t = 10−1. As

one can see, the free energy is concentrated on and thus could be used to identify

the edges of the pyramidal structures; the pyramid edges form a random network

over the surface, which results from the isotropic nature of the surface symmetry;

the cells of the network grow in time via a coarsening process.

The energy (3.5), normalized by the domain size, and the roughness (3.35) are

plotted in Figure 3.10. To further demonstrate the robustness of the proposed

methods, we experimentally verify several important properties of the computed

solution. In Figure 3.11 (a), the energy (3.5), normalized by the domain size, is

plotted in the log-log scale and it is nearly parallel to the dashed line representing

70

10
3

10
4

10
510

−2

10
−1

10
0

(a)

energy
−1/3 law

10
3

10
4

10
510

0

10
1

10
2

(b)

interface height
roughness
1/3 law

0 2 4 6 8
x 10

4

−1

0

1

2

3

4x 10
−14 (c)

Figure 3.11: Example 3: (a) The log-log scale plot of the energy evolution; (b) The log-log scale plot of
the interface height and roughness development; (c) Mean height evolution. In (a)–(c), ∆t = 10−1.

the t−1/3 curve. This suggests that the energy decays in time as a power law Ctn

with the exponent n = −1/3. In Figure 3.11 (b), the interface height, defined by

ũ(t) =

(
1

|Ω|

∫
Ω

u2(x, y, t) dxdy

) 1
2

,

and the roughness (3.35) are demonstrated to evolve in time according to a power

law Ctn with the exponent n = 1/3. Finally, Figure 3.11 (c) suggests that the

difference ū(t)− ū(0), where the mean height ū(t) is defined in (3.36), remains

practically zero at all times, which implies the mass conservation. The obtained

results match the experimental and numerical results reported in [43,65,82].

When the adaptive technique with ∆tmin = 10−1, ∆tmax = 5 and α = 1 is

implemented, the obtained results are very similar. As one can see in Figure 3.10,

the splitting step increases to ∆tmax very soon and then is always selected close to

∆tmax due to the slow variation of the roughness. This leads to substantial CPU

time usage saving, see the third row in Table 3.1.

Remark 3.5.1 We would like to point out that in this example, the curves for the

interface height growth and the roughness development in Figure 3.11 (b) almost

overlap since ū(t) = ū(0) ≈ 0.

Remark 3.5.2 We would like to stress that in this example, the energy transition

71

does not occur, and the solution has a smooth variation. It is therefore safe to take

a relatively small value α = 1 and ∆tmin = 10−1, which is much larger than

δ/100 = 10−2.

Example 4—Non-Mean-Zero Initial Data. In this example, taken from [69],

we consider the 2-D CH equation (3.4) with δ = 0.01 subject to the following

non-mean-zero initial condition:

u(x, y, 0) = 0.05 sinx sin y + 0.001, (x, y) ∈ [0, 2π]× [0, 2π].

We first compute the solution on a 128× 128 uniform grid with the constant

splitting step ∆t = 10−3. The solution computed at times t = 1, 2, 5 and 20 is shown

in Figure 3.12 (left). The experimental energy decay and roughness development

curves, shown in Figure 3.13, indicate that the solution reaches a steady state at

about t = 9. These results are in good agreement with those reported in [69].

We then compute the solution using the adaptive strategy with

∆tmin = 10−3, ∆tmax = 10−2 and α = 102. The results are plotted in Figure 3.12

(right). As one can see, the solution dynamics can be captured correctly when the

adaptive strategy is employed. The corresponding energy and roughness curves

shown in Figure 3.13 have some discrepancy with those obtained using the small

constant splitting step ∆t−3, though the adaptive and non-adaptive solutions are

quite close and the resulting steady states seem to be the same. Splitting steps

evolution, also plotted in Figure 3.13, shows that ∆t ≈ ∆tmax when the solution

approaches its steady state, which leads to a substantial saving in CPU time, see

the fourth row in Table 3.1.

Finally, we perform the mesh-refinement study and verify that the experimental

convergence rates for the proposed fast and stable explicit operator splitting

methods are close to the expected second-order one, see Table 3.5.

72

t = 1

0 2 4 6
0

1

2

3

4

5

6

−1

−0.5

0

0.5

1

t = 1

0 2 4 6
0

1

2

3

4

5

6

−1

−0.5

0

0.5

1

t = 2

0 2 4 6
0

1

2

3

4

5

6

−1

−0.5

0

0.5

1

t = 2

0 2 4 6
0

1

2

3

4

5

6

−1

−0.5

0

0.5

1

t = 5

0 2 4 6
0

1

2

3

4

5

6

−1

−0.5

0

0.5

1

t = 5

0 2 4 6
0

1

2

3

4

5

6

−1

−0.5

0

0.5

1

t = 20

0 2 4 6
0

1

2

3

4

5

6

−1

−0.5

0

0.5

1

t = 20

0 2 4 6
0

1

2

3

4

5

6

−1

−0.5

0

0.5

1

Figure 3.12: Example 4: u computed with ∆t = 10−3 (left column) and adaptive splitting time-stepping
with ∆tmin = 10−3, ∆tmax = 10−2 and α = 102 (right column).

Example 5—Mean-Zero Initial Data. In this example, also taken from [69],

we consider the 2-D CH equation with δ = 0.01 subject to the following mean-zero

73

0 4 8 12 16 20
0

2

4

6

8

10
(a)

∆t=10
−3

adaptive

0 4 8 12 16 20
0

0.2

0.4

0.6

0.8

1
(b)

∆t=10
−3

adaptive

0 4 8 12 16 20
0

0.002

0.004

0.006

0.008

0.01

(c)

∆t=10
−3

adaptive

Figure 3.13: Example 4: (a) Energy evolution; (b) Roughness development; (c) Splitting step evolution.
∆t = 10−3 (solid line) and adaptive splitting time-stepping with ∆tmin = 10−3, ∆tmax = 10−2 and
α = 102 (dashed line).

N ∆t ||uN,∆t − uN/2,2∆t||1 Rate ||uN,∆t − uN/2,2∆t||∞ Rate

64 2e-3 1.61e-00 – 3.01e-01 –

128 1e-3 1.37e-01 3.55 2.64e-02 3.51

256 5e-4 3.44e-02 2.00 5.79e-03 2.19

512 2.5e-4 1.12e-02 1.62 1.72e-03 1.75

Table 3.5: Example 4: L1- and L∞-errors and experimental convergence rates at t = 20.

initial condition:

u(x, y, 0) = 0.05 sinx sin y, (x, y) ∈ [0, 2π]× [0, 2π].

We first use a uniform 128× 128 grid with a constant splitting step ∆t = 10−3

and compute the solution until a large final time t = 100. The obtained results are

shown in Figure 3.14 (left column). Even though the solution at a small time t = 2

is similar to the corresponding solution reported in [68], later on our solution

bifurcates and seems to converge to a different steady state. We therefore perform a

thorough comparative study by taking a smaller ∆t = 10−4 and finer 256× 256 grid.

The results, plotted in Figure 3.14, clearly indicate that different numerical

solutions may converge to different steady states. We then use the sixth-order

semi-discrete finite-difference scheme for equation (3.11) instead of the fourth-order

one and discover even more different steady-state patterns, see Figure 3.15.

74

t = 2

0 2 4 6
0

1

2

3

4

5

6

−1

−0.5

0

0.5

1

t = 2

0 2 4 6
0

1

2

3

4

5

6

−1

−0.5

0

0.5

1

t = 2

0 2 4 6
0

1

2

3

4

5

6

−1

−0.5

0

0.5

1

t = 2

0 2 4 6
0

1

2

3

4

5

6

−1

−0.5

0

0.5

1

t = 6

0 2 4 6
0

1

2

3

4

5

6

−1

−0.5

0

0.5

1

t = 6

0 2 4 6
0

1

2

3

4

5

6

−1

−0.5

0

0.5

1

t = 6

0 2 4 6
0

1

2

3

4

5

6

−1

−0.5

0

0.5

1

t = 6

0 2 4 6
0

1

2

3

4

5

6

−1

−0.5

0

0.5

1

t = 10

0 2 4 6
0

1

2

3

4

5

6

−1

−0.5

0

0.5

1

t = 10

0 2 4 6
0

1

2

3

4

5

6

−1

−0.5

0

0.5

1

t = 10

0 2 4 6
0

1

2

3

4

5

6

−1

−0.5

0

0.5

1

t = 10

0 2 4 6
0

1

2

3

4

5

6

−1

−0.5

0

0.5

1

t = 50

0 2 4 6
0

1

2

3

4

5

6

−1

−0.5

0

0.5

1

t = 50

0 2 4 6
0

1

2

3

4

5

6

−1

−0.5

0

0.5

1

t = 50

0 2 4 6
0

1

2

3

4

5

6

−1

−0.5

0

0.5

1

t = 50

0 2 4 6
0

1

2

3

4

5

6

−1

−0.5

0

0.5

1

t = 100

0 2 4 6
0

1

2

3

4

5

6

−1

−0.5

0

0.5

1

t = 100

0 2 4 6
0

1

2

3

4

5

6

−1

−0.5

0

0.5

1

t = 100

0 2 4 6
0

1

2

3

4

5

6

−1

−0.5

0

0.5

1

t = 100

0 2 4 6
0

1

2

3

4

5

6

−1

−0.5

0

0.5

1

Figure 3.14: Example 5: u computed with a 128× 128 grid, ∆t = 10−3 (first column); 128× 128 grid,
∆t = 10−4 (second column); 256 × 256 grid, ∆t = 10−3 (third column); 256 × 256 grid, ∆t = 10−4

(fourth column).

Our results suggest that the mean-zero solutions of the 2-D CH equation (3.4)

may be unstable. Our conjecture is supported by recent analytical results on

75

t = 2

0 2 4 6
0

1

2

3

4

5

6

−1

−0.5

0

0.5

1

t = 2

0 2 4 6
0

1

2

3

4

5

6

−1

−0.5

0

0.5

1

t = 2

0 2 4 6
0

1

2

3

4

5

6

−1

−0.5

0

0.5

1

t = 2

0 2 4 6
0

1

2

3

4

5

6

−1

−0.5

0

0.5

1

t = 6

0 2 4 6
0

1

2

3

4

5

6

−1

−0.5

0

0.5

1

t = 6

0 2 4 6
0

1

2

3

4

5

6

−1

−0.5

0

0.5

1

t = 6

0 2 4 6
0

1

2

3

4

5

6

−1

−0.5

0

0.5

1

t = 6

0 2 4 6
0

1

2

3

4

5

6

−1

−0.5

0

0.5

1

t = 10

0 2 4 6
0

1

2

3

4

5

6

−1

−0.5

0

0.5

1

t = 10

0 2 4 6
0

1

2

3

4

5

6

−1

−0.5

0

0.5

1

t = 10

0 2 4 6
0

1

2

3

4

5

6

−1

−0.5

0

0.5

1

t = 10

0 2 4 6
0

1

2

3

4

5

6

−1

−0.5

0

0.5

1

t = 50

0 2 4 6
0

1

2

3

4

5

6

−1

−0.5

0

0.5

1

t = 50

0 2 4 6
0

1

2

3

4

5

6

−1

−0.5

0

0.5

1

t = 50

0 2 4 6
0

1

2

3

4

5

6

−1

−0.5

0

0.5

1

t = 50

0 2 4 6
0

1

2

3

4

5

6

−1

−0.5

0

0.5

1

t = 100

0 2 4 6
0

1

2

3

4

5

6

−1

−0.5

0

0.5

1

t = 100

0 2 4 6
0

1

2

3

4

5

6

−1

−0.5

0

0.5

1

t = 100

0 2 4 6
0

1

2

3

4

5

6

−1

−0.5

0

0.5

1

t = 100

0 2 4 6
0

1

2

3

4

5

6

−1

−0.5

0

0.5

1

Figure 3.15: Example 5: Same as in Figure 3.14, but using the sixth-order scheme for (3.11).

unstable equilibria in the 1-D CH equation, see [83].

76

Appendix A

Proofs of Theorems 3.2.4–3.2.6

Here, we provide proofs of Theorem 3.2.4–3.2.6. We denote tnew := t+ ∆tFE. We

also use the following notations: unew
j := u(xj, t+ ∆tFE) (in Theorem 3.2.4) and

unew
j,k := u(xj, yk, t+ ∆tFE) (in Theorems 3.2.5 and 3.2.6).

A.1 Proof of Theorem 3.2.4 (1-D MBE Equation)

Applying the forward Euler method to discretize (3.16) results in

unew
j − uj

∆t
= Fj. (A.1)

We first multiply both sides of equation (A.1) by (unew
j + uj)/2, replace unew

j on the

right using (A.1) and sum over the entire domain to obtain

∑
j

(unew
j)2 − u2

j

2∆t
=
∑
j

Fjuj +
∆t

2

∑
j

F 2
j . (A.2)

77

We then rewrite the first term on the right-hand side (RHS) of (A.2) as follows:

∑
j

Fjuj
(3.16)
=
∑
j

m∑
p=−m

αpHj+puj =
m∑

p=−m

αp
∑
j

Hj+puj =
m∑

p=−m

αp
∑
j

Hjuj−p

=
∑
j

Hj

m∑
p=−m

αpuj−p =
∑
j

Hj

m∑
p=−m

α−puj+p

(3.18)
=
∑
j

Hj

m∑
p=−m

(−αp)uj+p
(3.17)
= −

∑
j

(ux)
4
j ,

and estimate the second term on the RHS of (A.2) using the Cauchy-Schwarz

inequality:

∑
j

F 2
j

(3.16)
=
∑
j

(
m∑

p=−m

αpHj+p

)2

≤ 2m
∑
j

m∑
p=−m

α2
pH

2
j+p

= 2m
m∑

p=−m

α2
p

∑
j

H2
j+p = 2am

∑
j

H2
j

(3.17)
= 2am

∑
j

(ux)
6
j .

Therefore, the left-hand side (LHS) of equation (A.2) can be bounded by

∑
j

(unew
j)2 − u2

j

2∆t
≤ −

∑
j

(ux)
4
j + am∆t

∑
j

(ux)
6
j ≤

[
am∆tmax

j
(ux)

2
j − 1

]∑
j

(ux)
4
j ,

which is nonpositive provided the time-step is bounded by (3.26). �

A.2 Proof of Theorem 3.2.5 (2-D MBE Equation)

Applying the forward Euler method to discretize (3.20) results in

unew
j,k − uj,k

∆t
= Fj,k. (A.3)

78

We first multiply both sides of equation (A.3) by (unew
j,k + uj,k)/2, replace unew

j,k on the

right using (A.3) and sum over the entire domain to obtain

∑
j,k

(unew
j,k)2 − u2

j,k

2∆t
=
∑
j,k

Fj,kuj,k +
∆t

2

∑
j,k

F 2
j,k. (A.4)

We then use (3.20)–(3.22) to rewrite the first term on the RHS of (A.4) as follows:

∑
j,k

Fj,kuj,k = −
∑
j,k

[
(ux)

4
j,k + (ux)

2
j,k(uy)

2
j,k

]
−
∑
j,k

[
(uy)

4
j,k + (uy)

2
j,k(ux)

2
j,k

]
,

and use (3.20), (3.21) and the Cauchy-Schwarz inequality to estimate the second

term on the RHS of (A.4):

∑
j,k

F 2
j,k ≤ 8am

∑
j,k

[
(ux)

6
j,k + (ux)

2
j,k(uy)

4
j,k

]
+ 8bm

∑
j,k

[
(uy)

6
j,k + (uy)

2
j,k(ux)

4
j,k

]
.

Therefore, the LHS of equation (A.4) can be bounded by

∑
j,k

(unew
j,k)2 − u2

j,k

2∆t

≤
[
4am∆tmax

j,k
(ux)

2
j,k − 1

]∑
j,k

(ux)
4
j,k +

[
4bm∆tmax

j,k
(uy)

2
j,k − 1

]∑
j,k

(uy)
4
j,k

+

[
4am∆tmax

j,k
(uy)

2
j,k − 1

]∑
j,k

(ux)
2
j,k(uy)

2
j,k

+

[
4bm∆tmax

j,k
(ux)

2
j,k − 1

]∑
j,k

(uy)
2
j,k(ux)

2
j,k,

which is nonpositive provided the time-step is bounded by (3.28). �

79

A.3 Proof of Theorem 3.2.6 (2-D CH Equation)

Applying the forward Euler method to discretize (3.24) results in

unew
j,k − uj,k

∆t
= Fj,k. (A.5)

Once again, we multiply both sides of equation (A.5) by (unew
j,k + uj,k)/2, replace

unew
j,k on the right using (A.5) and sum over the entire domain to obtain

∑
j,k

(unew
j,k)2 − u2

j,k

2∆t
=
∑
j,k

Fj,kuj,k +
∆t

2

∑
j,k

F 2
j,k. (A.6)

We now notice that within the accuracy of the scheme

Hx
j,k = 3u2

j,k(ux)j,k and Hy
j,k = 3u2

j,k(uy)j,k. (A.7)

We then use (A.7), (3.23) and (3.24) to rewrite the first term on the RHS of (A.6)

as follows: ∑
j,k

Fj,kuj,k = −3
∑
j,k

u2
j,k(ux)

2
j,k − 3

∑
j,k

u2
j,k(uy)

2
j,k,

and use (A.7), (3.24) and the Cauchy-Schwarz inequality to estimate the second

term on the RHS of (A.6):

∑
j,k

F 2
j,k ≤ 36am

∑
j,k

u4
j,k(ux)

2
j,k + 36bm

∑
j,k

u4
j,k(uy)

2
j,k.

Therefore, the LHS of equation (A.6) can be bounded by

∑
j,k

(unew
j,k)2 − u2

j,k

2∆t
≤ 3

[
6am∆tmax

j,k
(u2

j,k)− 1

]∑
j,k

u2
j,k(ux)

2
j,k

+ 3

[
6bm∆tmax

j,k
(u2

j,k)− 1

]∑
j,k

u2
j,k(uy)

2
j,k,

80

which is nonnegative provided the time-step is bounded by (3.30). �

81

Bibliography

[1] C.-Y. Kao, A. Kurganov, Z. Qu, and Y. Wang. A fast explicit operator
splitting method for modified buckley–leverett equations. Journal of Scientific
Computing, 64(3):837–857, 2015.

[2] Y. Cheng, A. Kurganov, Z. Qu, and T. Tang. Fast and stable explicit operator
splitting methods for phase-field models. Journal of Computational Physics,
303:45–65, 2015.

[3] A. Chertock, A. Kurganov, Z. Qu, and T. Wu. Three-layer approximation of
two-layer shallow water equations. Mathematical Modelling and Analysis,
18(5):675–693, 2013.

[4] H. F. Trotter. On the product of semi-groups of operators. Proceedings of the
American Mathematical Society, 10(4):545–551, 1959.

[5] G. I. Marchuk. Metody rasshchepleniya. (Russian) [Splitting Methods]
”Nauka”, Moscow, 1988.

[6] G. I. Marchuk. Splitting and alternating direction methods. In Handbook of
numerical analysis, Vol. I, Handb. Numer. Anal., I, pages 197–462.
North-Holland, Amsterdam, 1990.

[7] G. Strang. On the construction and comparison of difference schemes. SIAM J.
Numer. Anal., 5:506–517, 1968.

[8] D. Goldman and T. J. Kaper. N th-order operator splitting schemes and
nonreversible systems. SIAM journal on numerical analysis, 33(1):349–367,
1996.

[9] Q. Sheng. Solving linear partial differential equations by exponential splitting.
IMA Journal of numerical analysis, 9(2):199–212, 1989.

[10] H. Jia and K. Li. A third accurate operator splitting method. Mathematical
and Computer Modelling, 53(1):387–396, 2011.

[11] S. Descombes. Convergence of a splitting method of high order for
reaction-diffusion systems. Mathematics of Computation, 70(236):1481–1501,
2001.

82

[12] A. D. Bandrauk, E. Dehghanian, and H. Lu. Complex integration steps in
decomposition of quantum exponential evolution operators. Chemical physics
letters, 419(4):346–350, 2006.

[13] J. Chambers. Symplectic integrators with complex time steps. The
Astronomical Journal, 126(2):1119, 2003.

[14] Z. Gegechkori, J. Rogava, and M. Tsiklauri. High degree precision
decomposition method for the evolution problem with an operator under a split
form. ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation
Mathématique et Analyse Numérique, 36(4):693–704, 2002.

[15] Z. Gegechkori, J. Rogava, and M. Tsiklauri. The fourth order accuracy
decomposition scheme for an evolution problem. ESAIM: Mathematical
Modelling and Numerical Analysis, 38(04):707–722, 2004.

[16] M. Suzuki. General theory of fractal path integrals with applications to
many-body theories and statistical physics. Journal of Mathematical Physics,
32(2):400–407, 1991.

[17] F. Castella, P. Chartier, S. Descombes, and G. Vilmart. Splitting methods with
complex times for parabolic equations. BIT Numerical Mathematics,
49(3):487–508, 2009.

[18] A. Chertock, C. Doering, E. Kashdan, and A. Kurganov. A fast explicit
operator splitting method for passive scalar advection. J. Sci. Comput.,
45:200–214, 2010.

[19] A. Chertock, E. Kashdan, and A. Kurganov. Propagation of diffusing pollutant
by a hybrid Eulerian-Lagrangian method. In Hyperbolic problems: theory,
numerics, applications, pages 371–379. Springer, Berlin, 2008.

[20] A. Chertock, A. Kurganov, and G. Petrova. Fast explicit operator splitting
method. Application to the polymer system. In Finite volumes for complex
applications IV, pages 63–72. ISTE, London, 2005.

[21] A. Chertock, A. Kurganov, and G. Petrova. Fast explicit operator splitting
method for convection-diffusion equations. Internat. J. Numer. Meth. Fluids,
59:309–332, 2009.

[22] A. Chertock and A. Kurganov. On splitting-based numerical methods for
convection-diffusion equations. In Numerical methods for balance laws,
volume 24 of Quad. Mat., pages 303–343. Dept. Math., Seconda Univ. Napoli,
Caserta, 2009.

[23] E. F. Toro. Riemann solvers and numerical methods for fluid dynamics: a
practical introduction. Springer Science & Business Media, 2013.

83

[24] R. LeVeque. Finite volume methods for hyperbolic problems. Cambridge Texts
in Applied Mathematics. Cambridge University Press, Cambridge, 2002.

[25] Numerical schemes for conservation laws, author=Kröner, D,
journal=Wiley-Teubner Series Advances in Numerical Mathematics,
year=1997, publisher=John Wiley & Sons Ltd., Chichester.

[26] E. Godlewski and P.-A. Raviart. Numerical approximation of hyperbolic systems
of conservation laws, volume 118. Springer Science & Business Media, 2013.

[27] F. Bouchut. Nonlinear stability of finite Volume Methods for hyperbolic
conservation laws: And Well-Balanced schemes for sources. Springer Science &
Business Media, 2004.

[28] M. Ben-Artzi and J. Falcovitz. Generalized Riemann problems in computational
fluid dynamics, volume 11. Cambridge University Press, 2003.

[29] A. Kurganov and C.-T. Lin. On the reduction of numerical dissipation in
central-upwind schemes. Commun. Comput. Phys., 2(1):141–163, 2007.

[30] A. Kurganov, S. Noelle, and G. Petrova. Semidiscrete central-upwind schemes
for hyperbolic conservation laws and Hamilton-Jacobi equations. SIAM J. Sci.
Comput., 23(3):707–740 (electronic), 2001.

[31] A. Kurganov and E. Tadmor. New high resolution central schemes for
nonlinear conservation laws and convection-diffusion equations. J. Comput.
Phys., 160:241–282, 2000.

[32] U. M. Ascher and L. R. Petzold. Computer methods for ordinary differential
equations and differential-algebraic equations. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, 1998.

[33] E. Hairer and G. Wanner. Solving ordinary differential equations. II, volume 14
of Springer Series in Computational Mathematics. Springer-Verlag, Berlin,
second edition, 1996. Stiff and differential-algebraic problems.

[34] A. Abdulle and A. A. Medovikov. Second order chebyshev methods based on
orthogonal polynomials. Numerische Mathematik, 90(1):1–18, 2001.

[35] A. Abdulle. Fourth order Chebyshev methods with recurrence relation. SIAM
J. Sci. Comput., 23(6):2041–2054 (electronic), 2002.

[36] W. Hundsdorfer and J. G. Verwer. Numerical solution of time-dependent
advection-diffusion-reaction equations, volume 33. 2013.

[37] A. Medovikov. High order explicit methods for parabolic equations. BIT,
38(2):372–390, 1998.

84

[38] U. M. Ascher, S. J. Ruuth, and R. J. Spiteri. Implicit-explicit runge-kutta
methods for time-dependent partial differential equations. Applied Numerical
Mathematics, 25(2):151–167, 1997.

[39] C. J. van Duijn, L. A. Peletier, and I. S. Pop. A new class of entropy solutions
of the Buckley-Leverett equation. SIAM J. Math. Anal., 39(2):507–536
(electronic), 2007.

[40] Y. Wang. Central schemes for the modified Buckley-Leverett equation. PhD
thesis, The Ohio State University, 2010.

[41] Y. Wang and C.-Y. Kao. Central schemes for the modified Buckley-Leverett
equation. J. Comput. Sci., 4(1):12–23, 2013.

[42] J. W. Cahn and J. E. Hilliard. Free energy of a nonuniform system. I.
interfacial free energy. J. Chem. Phys., 28:258–267, 1958.

[43] B. Li and J.-G. Liu. Thin film epitaxy with or without slope selection. Euro.
Jnl of Applied Mathematics, 14:713–743, 2003.

[44] S. E. Buckley and M. C. Leverett. Mechanism of fluid displacement in sands.
Petroleum Transactions, AIME, 146:107–116, 1942.

[45] D. A. DiCarlo. Experimental measurements of saturation overshoot on
infiltration. Water Resour. Res., 40(4):W04215.1–W04215.9, 2004.

[46] S. M. Hassanizadeh and W. G. Gray. Mechanics and thermodynamics of
multiphase flow in porous media including interphase boundaries. Adv. Water
Resour., 13:169–186, 1990.

[47] S. Hassanizadeh and W. G. Gray. Thermodynamic basis of capillary pressure
in porous media. Water Resour. Res., 29:3389–3405, 1993.

[48] G. I. Barenblatt, J. Garcia-Azorero, A. De Pablo, and J. L. Vazquez.
Mathematical model of the non-equilibrium water-oil displacement in porous
strata. Appl. Anal., 65(1-2):19–45, 1997.

[49] K. Spayd and M. Shearer. The Buckley-Leverett equation with dynamic
capillary pressure. SIAM J. Appl. Math., 71(4):1088–1108, 2011.

[50] A. Kurganov, G. Petrova, and B. Popov. Adaptive semi-discrete
central-upwind schemes for nonconvex hyperbolic conservation laws. SIAM J.
Sci. Comput., 29:2381–2401, 2007.

[51] A. Chertock, A. Kurganov, and G. Petrova. Fast explicit operator splitting
method for convection-diffusion equations. Internat. J. Numer. Meth. Fluids,
59:309–332, 2009.

85

[52] C. J. van Duijn, A. Mikelić, and I. S. Pop. Effective equations for two-phase
flow with trapping on the micro scale. SIAM J. Appl. Math., 62(5):1531–1568
(electronic), 2002.

[53] C. J. van Duijn, A. Mikelic, and I. S. Pop. Effective Buckley-Leverett equations
by homogenization. In Progress in industrial mathematics at ECMI 2000
(Palermo), volume 1 of Math. Ind., pages 42–51. Springer, Berlin, 2002.

[54] A. J. Wathen. Moving finite elements and oil reseruoir modelàng. PhD thesis,
University of Reading, U.K., 1984.

[55] I. W. Johnson, A. J. Wathen, and M. J. Baines. Moving finite element methods
for evolutionary problems. II. Applications. J. Comput. Phys., 79(2):270–297,
1988.

[56] C. Cuesta, C. J. van Duijn, and J. Hulshof. Infiltration in porous media with
dynamic capillary pressure: travelling waves. European J. Appl. Math.,
11(4):381–397, 2000.

[57] K.-A. Lie and S. Noelle. On the artificial compression method for second-order
nonoscillatory central difference schemes for systems of conservation laws.
SIAM J. Sci. Comput., 24(4):1157–1174, 2003.

[58] H. Nessyahu and E. Tadmor. Nonoscillatory central differencing for hyperbolic
conservation laws. J. Comput. Phys., 87(2):408–463, 1990.

[59] P. K. Sweby. High resolution schemes using flux limiters for hyperbolic
conservation laws. SIAM J. Numer. Anal., 21(5):995–1011, 1984.

[60] B. van Leer. Towards the ultimate conservative difference scheme. V. A
second-order sequel to Godunov’s method. J. Comput. Phys., 32(1):101–136,
1979.

[61] C.-W. Shu. Essentially non-oscillatory and weighted essentially non-oscillatory
schemes for hyperbolic conservation laws. In Advanced numerical
approximation of nonlinear hyperbolic equations (Cetraro, 1997), volume 1697
of Lecture Notes in Math., pages 325–432. Springer, Berlin, 1998.

[62] C.-W. Shu. High order weighted essentially nonoscillatory schemes for
convection dominated problems. SIAM Rev., 51(1):82–126, 2009.

[63] S. Gottlieb, D. Ketcheson, and C.-W. Shu. Strong stability preserving
Runge-Kutta and multistep time discretizations. World Scientific Publishing
Co. Pte. Ltd., Hackensack, NJ, 2011.

[64] S. Gottlieb, C.-W. Shu, and E. Tadmor. Strong stability-preserving high-order
time discretization methods. SIAM Rev., 43(1):89–112, 2001.

86

[65] C. Xu and T. Tang. Stability analysis of large time-stepping methods for
epitaxial growth models. SIAM J. Numer. Anal., 44:1759–1779, 2006.

[66] Y. He, Y. Liu, and T. Tang. On large time-stepping methods for the
Cahn-Hilliard equation. Appl. Numer. Math., 57:616–628, 2007.

[67] Z. Qiao, Z. Zhang, and T. Tang. An adaptive time-stepping strategy for the
molecular beam epitaxy models. SIAM J. Sci. Comput., 33:1395–1414, 2011.

[68] Z. Zhang and Z. Qiao. An adaptive time-stepping strategy for the
Cahn-Hilliard equation. Commun. Comput. Phys., 1:1261–1278, 2012.

[69] X. Feng, T. Tang, and J. Yang. Long time numerical simulations for phase-field
problems using p-adaptive spectral deferred correction methods. SIAM J. Sci.
Comput., 37(1):A271–A294, 2015.

[70] J. Shen, C. Wang, X. Wang, and S. M. Wise. Second-order convex splitting
schemes for gradient flows with Ehrlich-Schwoebel type energy: application to
thin film epitaxy. SIAM J. Numer. Anal., 50(1):105–125, 2012.

[71] F. Guillén-González and G. Tierra. Second order schemes and time-step
adaptivity for Allen-Cahn and Cahn-Hilliard models. Comput. Math. Appl.,
68(8):821–846, 2014.

[72] F. Guillén-González and G. Tierra. On linear schemes for a Cahn-Hilliard
diffuse interface model. J. Comput. Phys., 234:140–171, 2013.

[73] G. Tierra and F. Guillén-González. Numerical methods for solving the
Cahn-Hilliard equation and its applicability to related energy-based models.
Arch. Comput. Methods Eng., 22(2):269–289, 2015.

[74] A. Abdulle and A. A. Medovikov. Second order Chebyshev methods based on
orthogonal polynomials. Numer. Math., 90(1):1–18, 2001.

[75] W. Hundsdorfer and J. Verwer. Numerical solution of time-dependent
advection-diffusion-reaction equations, volume 33 of Springer Series in
Computational Mathematics. Springer-Verlag, Berlin, 2003.

[76] A. Abdulle. ROCK4 code available at
http://www.unige.ch/ hairer/software.html.

[77] A. A. Medovikov. DUMKA3 code available at http://dumkaland.org/.

[78] B. P. Sommeijer, L. F. Shampine, and J. G. Verwer. RKC: an explicit solver for
parabolic PDEs. J. Comput. Appl. Math., 88(2):315–326, 1998.

[79] P. J. van der Houwen and B. P. Sommeijer. On the internal stability of explicit,
m-stage Runge-Kutta methods for large m-values. Z. Angew. Math. Mech.,
60(10):479–485, 1980.

87

[80] J. G. Verwer, W. H. Hundsdorfer, and B. P. Sommeijer. Convergence properties
of the Runge-Kutta-Chebyshev method. Numer. Math., 57(2):157–178, 1990.

[81] J. G. Verwer, B. P. Sommeijer, and W. Hundsdorfer. RKC time-stepping for
advection-diffusion-reaction problems. J. Comput. Phys., 201(1):61–79, 2004.

[82] D. Moldovan and L. Golubovic. Interfacial coarsening dynamics in epitaxial
growth with slope selection. Phys. Rev. E, 61(6):6190C6214, 2000.

[83] A. Scheel. Spinodal decomposition and coarsening fronts in the cahn–hilliard
equation. Journal of Dynamics and Differential Equations, pages 1–34, 2014.

88

Biography

Zhuolin Qu was born in Shanghai, China in 1989. She attended the School of

Mathematical Science in University of Science and Technology of China, where she

graduated with Bachelor of Science degree in Mathematics in 2011. She then

enrolled in PhD program under the guidance of Dr. Alexander Kurganov at

Mathematics Department in Tulane University.

